
 Home Video Game Manual for the Bally Astrocade

 Dave Nutting Associates

 Text Release 2.1 - February 8, 2002

This document, officially called the 'Home Video Game System' manual, is better
known as the 'Nutting' or 'DNA' manual.

Conventions:
 1) To match the original manual as closely as possible (for table of
 contents reasons), two blanks lines separate each 'page.' This
 is followed by the page number and then one more blank line.
 2) The Page Number appears at the top of each page, not the bottom
 (don't get confused); it takes up the first line.
 3) Every instance of the word 'cassette' has been replaced by the
 word 'cartridge' to avoid any confusion with the BASIC Cassette
 Interface (which isn't mentioned in this manual at all).
 4) Special Character Representations:
 ____ ____
 a. IORQ, MREQ = IORQ#, MREQ#
 b. Subscripts = '_' (underscore) - contextual
 c. Superscripts = '^' (caret) - contextual
 d. The Greek symbol Phi ('O' over-striked with an 'I') is
 replaced with the word 'Phi'

From the original manual:

This document and its contents are the property of Dave Nutting Associates,
incorporated and Bally Manufacturing Corporation. The information contained
herein is both proprietary and confidential.

No part of this document may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means electronic, mechanical, chemical,
photographical, recording, photocopying or otherwise.

Dave Nutting Associates, incorporated assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Dave Nutting Associates,
incorporated designed product.

This document must be returned to Dave Nutting Associates, Incorporated by
registered mail within five days of written demand.

(c) 1978 Dave Nutting Associates, Incorporated
(c) 1978 Bally Manufacturing Corporation

This page intentionally left blank for double-sided print purposes

Table of Contents - Software

 i

 TABLE OF CONTENTS - SOFTWARE

 1 Home Video Game System
 2 User Program Interface
 5 System Routine Conventions
 7 Inline Argument Mask Table Entry
 8 INTPC Begin Interpreting
 9 XINTC Exit Interpreter
 10 RCALL Call Assembly Language Subroutine
 11 MCALL Call Interpreter Subroutine
 12 MJUMP Interpreter Jump
 13 MRET Return From Interpretive Subroutines
 14 Screen Handler
 15 SETOUT Set Display Ports
 16 FILL Fill A Contiguous Area With Constant
 17 RECTAN Paint A Rectangle
 18 Write Routines
 19 Calling Sequence
 20 Representation
 21 VWRITR Write Relative From Vector
 22 WRITR Write Relative
 23 WRITP Write With Pattern Size Scare Up
 24 WRIT Write Pattern
 25 WRITA Write Absolute
 26 SAVE Save Area
 27 RESTOR Restore Area
 28 VBLANK Blank From Vector
 29 BLANK Blank Area
 30 SCROLL Scroll Window

Table of Contents - Software

 ii

 31 Alphanumeric Display Routines
 34 DISNUM Display BCD Number
 35 DISTIM Display Time
 36 CHRDIS Display Character
 37 STRDIS Display String
 38 Interpretation of Codes 64H to 7FH
 39 Vectoring - Vectoring Routines
 42 VECT Vector Object In Two Dimensions
 43 VECTC Vector A Co-ordinate
 44 RELABS Convert Relative Co-ordinates
 45 RELAB1 Convert Relative Address To Absolute
 46 COLSET Set Color Registers
 47 INCSCR Increment Score And Compare To End Score
 48 PAWS Pause
 49 KCTASC Key Code to ASCII
 50 SENTRY Sense Transition
 53 DOIT Respond To Input Transition
 54 PIZBRK Coffee Break, Black Out Screen, Wait For Key
 55 Example
 56 Interrupt - Music Processor
 57 MUZCPU Instruction Set
 58 Music Score Example
 59 BMUSIC Begin Playing Music
 60 EMUSIC Stop Music
 61 ACTINT Active Interrupts
 62 DECCTS Decrement Counter/Timers
 63 CTIMER

Table of Contents - Software

 iii

 64 STIMER Decrement Timers
 65 MOVE Move Bytes
 66 INDEXN Index Nibble
 67 STOREN Start Nibble
 68 INDEXW Index Word
 69 INDEXB Index Byte
 70 SETB Store Byte
 71 SETW Store Word
 72 Cartridge Conventions
 75 GETPAR Get Game Parameter
 76 MENU Display Menu And Branch On Selection
 77 GETNUM Get Number
 79 MSKTD Joystick Mask To Deltas
 80 RANGED Ranged Random Number

Table of Contents - Hardware

 iv

 TABLE OF CONTENTS - HARDWARE

 81 Introduction
 82 Memory Map
 85 Screen Map
 88 Color Mapping
 89 Background Color
 90 Vertical Blank
 92 Interrupt Feedback
 92 Interrupt Control Bits
 93 Screen Interrupt
 93 Light Pen Interrupt
 94 Magic Register
 95 Expand
 96 Shifter
 96 Flopper
 98 Rotator
 100 OR And XOR
 100 Intercept
 101 Player Input
 103 Master Oscillator
 104 Tones
 104 Sound Block Transfer
 106 Output Ports
 107 Input Ports

Table of Contents - Hardware

 v

 109 Microcycler
 111 Address Chip Description
 114 Data Chip Description
 117 I/O Chip Description
 119 Music Processor
 123 Custom Chip Timing
 131 Video Timing
 135 Electrical Specifications for
 Midway Custom Circuits

Table of Contents - List of Illustrations

 vi

 LIST OF ILLUSTRATIONS

 6 Context Block Format
 20 Pattern Representation
 32 Option Byte
 33 Alternate Font Descriptor
 40 Vector Block
 41 Vector Status Detail
 41 Checks Mask Detail
 44 Normal and Flopped Co-ordinate Systems
 51 Keypad Mask Configuration
 56 Voices Status Register
 66 INDEXN
 68 INDEXW
 74 Cartridge Map.
 78 Display Number Options
 78 Character Display Options
 83 Memory Map Low Resolution
 84 Memory Map High Resolution
 86 Screen Map Low Resolution
 87 Screen Map High Resolution
 91 Color Register Map
 97 Shifter - Flopper
 99 Rotator
 102 Player Input
 105 Audio Generator Block Diagram
 106 Output Ports

Table of Contents - List of Illustrations

 vii

 107 Input Ports
 108 System Block Diagram
 110 Microcycler Block Diagram
 113 Address Chip Block Diagram
 116 Data Chip Block Diagram
 118 I/O Chip Block Diagram
 121 Master Oscillator
 122 Tone Generators
 124 Memory Write Without Extra Wait State
 125 Memory Write With Video Wait State
 126 Memory Read Without Extra Wait State
 127 Memory Read With Video Wait State
 128 I/O Read From Port 10H - 17H
 129 I/O Read From Other Than Port 10H - 17H
 130 I/O Write
 132 Relationship Between 7M, Horiz Dr, Vert Dr,
 Phi G, PX# and RAS
 133 Relationship Between Horiz Dr, Horiz Blank,
 Horiz Sync, and Color Burst
 134 Relationship Between Vertical Sync,
 Vertical Blank, and Vertical Drive

Table of Contents - List of Illustrations

 viii

This page intentionally left blank for double-sided print purposes

Home Video Game System

HOME VIDEO GAME SYSTEM

This documentation describes the Bally Home Video Game System. The
description begins with a discussion of the major sub-sections of the
system. Following this, each sub-section is presented in greater
detail, with detailed particulars, such as calling sequences and
resource use.

The major sub-sections of the system are:

The User Program Interface - Allows cartridges to reference the
system routines through a standard interface. Includes an interpreter.

The Screen Handler - A complex of routines for creating screen images.
Includes facilities for initialization, pattern and character display,
co-ordinate conversion, and object vectoring.

The Interrupt Processor - Decrements timers, plays music, and
produces sounds.

The Human Interface - Reads keyboard and control handles, inputs game
selection and options.

Math Routines - A package of routines for manipulating floating
BCD numbers.

UPI - User Program Interface Description

 2

USER PROGRAM INTERFACE

The User Program Interface (UPI) is a set of procedures and conventions,
which are utilized by a cartridge program to access the facilities
provided by the home video game system. By adhering to these conventions
a cartridge program will be system independent, thus allowing improvements
to be made to later versions of the system and on board games, while
maintaining upward compatibility.

The basic rule for using the UPI is:
 With exception to the system DOPE vector, no cartridge
 should ever address system ROM directly, or expect a
 given cell to always equal a certain value.

The mechanism for calling a system routine is:

 RST 56
 DEFB (routine # + option)

where routine number is an even number specifying which sub-routine
to transfer to, symbolic identifiers, which are equated to routine
numbers, are provided by HVGLIB.

Option is used to specify how arguments are being passed to the
system routine. If option equals zero, the arguments are presumed to
exist in CPU registers; if option equals 1, the arguments are taken
to follow in line after the routine number/option byte. These arguments
are loaded into the CPU registers automatically before the
called routine is entered. The arguments required by each system
routine are given in the routine's detail documentation.

 UPI - User Program Interface Description

 3

The SYSTEM macro generates the sequence previously mentioned
with option = 0:

 SYSTEM (routine #)
(example)
 SYSTEM FILL

The SYSSUK macro generates the sequence previously mentioned
with option = 1.

 SYSSUK (routine #)

Frequently it is desirable to string several system routine calls
together. If four or more calls follow in sequence, it is more
efficient to utilize the interpreter. By using the interpreter we
void the overhead of the RST 56 instruction by expecting a call index
to immediately follow the call index or arguments used in the previous
system routine.

Special call indexes are used to enter and exit interpretive mode:

Example:

 SYSTEM INTPC ;BEGIN INTERPRETING
 DO FILL ;DO FILL ROUTINE
 DEFW NORMEM ;STARTING AT TOP OF SCREEN
 DEFW 92*BYTEPL ;CONTINUING FOR 92 LINES
 DEFB 0 ;FILLED WITH ZEROES
 DO CHRDIS ;DO CHARACTER DISPLAY ROUTINE
 DEFB 0 ;Y-AXIS POSITION
 DEFB 10 ;X-AXIS POSITION
 DEFB 8 ;OPTIONS-PLOP,10-ON,00-OFF
 DEFB 'A' ;CHARACTER TO BE DISPLAYED
 EXIT ;EXIT INTERPRETER

UPI - User Program Interface Description

 4

A block of call indexes have been set aside for the internal use of
cartridge programs. If a negative call index is encountered, the
user's macro routine address table and argument table are utilized.
The user is responsible for storing the addresses of these tables
into dedicated system RAM cells.

All UPI routines are re-entrant.

Registers which are not defined as containing output parameters
will not change.

 UPI - System Routine Conventions

 5

SYSTEM ROUTINE CONVENTIONS

A system routine is coded like a conventional machine language
subroutine, with the exception that output parameters are not passed
through registers, but rather through the context block.

The context block is created by the RST 56 call. The user's register
set (AF, BC, DE, HL, IX, IY) is pushed onto the stack. Register IY
is set to point at this stack frame. Thus a copy of the input
arguments exists in RAM which the system routine may refer to as needed.
These arguments are also present in the registers when the system
routine is entered; hence it is only necessary to refer to the context
block when one has clobbered an input argument.

An output argument is returned to the caller by setting it in the
context block. If a register was changed, but the associated cell in
the context block was not, then the register will have its old value
on return. Thus a system routine is free to use any of the registers
it needs without concern to saving and restoring. Moreover, the user
can assume that no registers will change except those defined as
returning an output argument.

The following illustration describes the context block and equates
provided in HVGLIB for each field.

Four tables are used by the UPI in the control transfer process. The
first two tables give the routines starting address indexed via call
number. The systems table is called SYSDPT. The user may extend this
table by storing the address of his extended table into USERTB,
USERTB+1. This address should point 128 bytes before the first entry.

UPI - System Routine Conventions

 6

The other two tables describe what in line arguments a call that
specifies in line arguments should expect. This table gives a one-byte
bitstring, also indexed via call number. The systems name is MRARGT,
the user's address is in UMARGT, UMARGT must point 64 bytes ahead.
Arguments must follow the call in a specified order.

Note that the context contains additional information not shown. This
information exists both above and below the context. User programs
should never use this information or even assume that it exists. The
user should only address this area by using IY.

 +--------------+-------------+-------------+
 | DISPLACEMENT | MEMORY CELL | EQUATE NAME |
 +--------------+-------------+-------------+
 | 0 | IY | CBIYL |
 +--------------+ | |
 | 1 | | CBIYH |
 +--------------+-------------+-------------+
 | 2 | IX | CBIXL |
 +--------------+ | |
 | 3 | | CBIXH |
 +--------------+-------------+-------------+
 | 4 | E | CBE |
 +--------------+-------------+-------------+
 | 5 | D | CBD |
 +--------------+-------------+-------------+
 | 6 | C | CBC |
 +--------------+-------------+-------------+
 | 7 | B | CBB |
 +--------------+-------------+-------------+
 | 8 | FLAGS | CBFLAG |
 +--------------+-------------+-------------+
 | 9 | A | CBA |
 +--------------+-------------+-------------+
 | A | L | CBL |
 +--------------+-------------+-------------+
 | B | H | CBH |
 +--------------+-------------+-------------+

 CONTEXT BLOCK FORMAT

 UPI - System Routine Conventions

 7

IN LINE ARGUMENT MASK ENTRY

TABLES MRARGT AND UMARGT

If a bit corresponding to a register is set, the register is loaded.
The order in which the arguments must appear is:

IX (L then H), E, D, C, B, A, L, H

If an argument isn't specified, it is omitted.

 7 6 5 4 3 2 1 0
 +---+---+---+---+---+---+---+---+
 | H | L | A |IX | B | C | D | E |
 +---+---+---+---+---+---+---+---+

UPI - System Routines

 8

UPI INTPC
BEGIN INTERPRETING

Calling Sequence: SYSTEM INTPC
Arguments: NONE
Notes: NONE
Description:

See UPI description for explanation of interpreter.

 UPI - System Routines

 9

UPI XINTC
EXIT INTERPETER

Calling Sequence: EXIT
Arguments: NONE

Description:
This code causes the interpreter to exit. Execution of machine
instructions proceeds at the following location.

Restrictions:
This routine should only be called using the interpreter. A direct
system call would produce unpredictable (and catastrophic) results.

UPI - System Routines

 10

UPI RCALL
CALL ASSEMBLY LANGUAGE SUBROUTINE

Calling Sequence: DO RCALL
 or
 DONT RCALL
 DEFW (routine address)
Arguments: HL = address of routine to call

Description:
RCALL may be used to call any assembly language subroutine from the
interpreter. When the subroutine returns, interpretation proceeds
at the next instruction.
When the assembly language routine receives control, HL will point
at the routine's starting address, the other registers will contain
their current values. Any changes made to the register set by the
subroutine will not be passed along. To pass an output parameter, the
subroutine must alter the context block, which is pointed to by IY.

Restrictions:
Assembler routines must not destroy IY.

Example: DEFB RCALL
 DEFW CLRAC
 .
 .
 .
 CLRAC: XOR A
 RET

 UPI - System Routines

 11

UPI MCALL
CALL INTERPRETER SUBROUTINE

Calling Sequence: SYSTEM MCALL
 or
 SYSSUK MCALL
 DEFW (routine address)

Arguments: HL = Subroutine address

Description:
MCALL is used to call an interpreter sequence in a subroutine. MCALL
may be used from machine language as well as within an interpreted
sequence. Calls may be nested infinitely, limited only by stack
space (4 bytes per call).
To exit the interpreted subroutine, use MRET

Example: SYSSUK MCALL
 DEFW ZAPALL
 .
 .
 .
 ZAPALL: DO FILL+1 ;DO FILL
 DEFW NORMEM
 DEFW 0FFFH
 DEFB 0
 DO MRET ;GO BACK TO CALLER

UPI - System Routines

 12

UPI MJUMP
INTERPRETER JUMP

Calling Sequence: DO MJUMP
 or
 DONT MJUMP
 DEFW (Goto address)

Arguments: HL = Go to address

Description:
The current interpretive program counter is set to the contents of HL.
The next instruction is fetched from that address.

Restrictions:
MJUMP must be called from the interpreter. The targets of all JUMPS
must also be interpreted sequences.

Example: SYSTEM INTPC ;ENTER INTPC STEP
 .
 .
 .
 DO MJUMP ;JUMP TO END OF
 DEFW END ;INTPC STEP
 .
 .
 .
 END: DEFB XINTC ;EXIT INTERPRETER

 UPI - System Routines

 13

UPI MRET
RETURN FROM INTERPRETIVE SUBROUTINES

Calling Sequence: DO MRET
Arguments: None

Description:
MRET causes execution to proceed at the instruction following the
corresponding MCALL instruction. See MCALL for more information.

Screen Handler - Description

 14

SCREEN HANDLER

The screen handler is a group of routines for generating frame buffer
images. Included are entries for filling sections of the screen with
constant data, the animation of figures, and the display of alpha-
numerics.

Many of these routines utilize the MAGIC functions provided by the
custom chips. Since the status of these chips cannot be context-
switched, many of these routines are not re-entrant. The user is
responsible for preventing conflicts. This can be done by disabling
interrupt, or implementing a semaphore.

 Screen Handler - System Routines

 15

SCREEN SETOUT
SET DISPLAY PORTS

Calling sequence: SYSTEM SETOUT
 or
 SYSSUK SETOUT
 DEFB BLINE*2
 DEFB HORIZX/4
 DEFB INMOD
Arguments: A = Data to output to INMOD (port EH)
 B = Data to output to HORCB (port 9H)
 D = Data to output to VERBL (port AH)
Output: None

Description: Outputs above data to ports
 See hardware writeup for discussion of
 above ports.

Screen Handler - System Routines

 16

SCREEN FILL
FILL A CONTIGUOUS AREA WITH CONSTANT

Calling Sequence: SYSTEM FILL
 or
 SYSSUK FILL
 DEFW (first byte)
 DEFW (number of bytes)
 DEFB (data to fill with)
Arguments: A = Data to fill with
 BC = Number of bytes to fill
 DE = Address to begin filling at

Description:
This routine sets the memory range DE to (DE+BC-1) to the
specified constant.

Notes:
Fill can be used for screen clearing, or initialization of scratchpad
RAM. It is re-entrant.

 Screen Handler - System Routines

 17

SCREEN RECTAN
PAINT A RECTANGLE

Calling Sequence: SYSTEM RECTAN
 or
 SYSSUK RECTAN
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (X size)
 DEFB (Y size)
 DEFB (color mask)
Arguments: A = Color mask to write rectangle with
 B = Y-size of rectangle in pixels
 C = X-size of rectangle in pixels
 D = Y co-ordinate for UL corner of rectangle
 E = X co-ordinate for UL corner of rectangle

Description:
A rectangle of specified size of color mask is written at X,Y. RECTAN
uses the MAGIC functions and is not re-entrant.

Example: Put up a 3 X 4 rectangle of color 2 at 15,13.
 DO RECTAN
 DEFB 15
 DEFB 13
 DEFB 3
 DEFB 4
 DEFB 10101010B

Screen Handler - (Write) Description

 18

SCREEN WRITE ROUTINES

Virtually every video game involves the manipulation of animated
figures. These figures are composed of patterns which are arbitrary
pixel arrays. The write routines are used to transfer such patterns
to the screen.

Five hierarchical levels of call are supported. The levels differ in
the amount of preprocessing required by the user before calling. The
highest level assumes that most of the parameters reside in a standard
data structure, while the lowest level presumes that all arguments are
in registers with all attendant transformations (such as relative-to-
absolute conversion) already accomplished. The five levels are:
 (1) Write from a Vector
 (2) Write Relative
 (3) Write Variable Pattern
 (4) Write
 (5) Write Absolute
Two transformations of the pattern may be performed prior to writing.
They are FLOP and EXPAND. FLOP is mirroring the pattern on the X-axis.
EXPAND is the translation of a 1-bit per pixel pattern into a 2-bit per
Pixel pattern. Since many patterns are only two-color, this allows for
more efficient pattern storage. FLOP and EXPAND can both be done at
the same time.

Three writing modes may be used. They are PLOP, OR, and XOR. PLOP is
a conventional store into RAM. If OR is optioned, the data being written
is ORed bit by bit with whatever was already there. Similarly, if XOR
is set, the pattern is XORed with that beneath. Use of OR or XOR takes
slightly longer since a read before write must be performed.

Note that ROTATE is not currently supported in software due to
space considerations.

 Screen Handler - (Write) Calling Sequence

 19

STANDARD CALLING SEQUENCE

Every write routine uses a subset of the following argument/register
assignment:

 A = Magic Register
 B = Y Pattern Size
 C = X Pattern Size in Bytes
 D = Y Co-ordinate (0 - 101)
 E = X Co-ordinate (0 - 159)
 HL = Pattern Address
 IX = Vector Address

Screen Handler - (Write) Pattern Representation

 20

PATTERN REPRESENTATION

The higher the level of the write routine, the more ancillary infor-
mation is stored with the pattern. The following diagram shows what
each level expects. Any bytes of lower address than the pointer for
a given level, need not be specified.

Use Restrictions:
None of the write routines are re-entrant due to Magic Register/Expander
clobber.

 +----------------+
 VWRITR,WRITR --> | X DISPLACEMENT | 0
 +----------------+
 | Y DISPLACEMENT | 1
 +----------------+
 WRITP --> | X SIZE | 2
 +----------------+
 | Y SIZE | 3
 WRIT,WRITA --> +----------------+
 | | 4
 +----------------+
 | |
 . .
 . .
 | |
 +----------------+
 | | N+4
 +----------------+

Screen Handler - (Write) System Routines

 21

SCREEN WRITE VWRITR
WRITE RELATIVE FROM VECTOR

Calling Sequence: SYSTEM VWRITR
 or
 SYSSUK VWRITR
 DEFW (vector)
 DEFW (pattern)
Arguments: HL = Pattern address
 IX = Vector Address
Output: DE = Absolute address used
 A = Magic register used

Description:
The co-ordinates and magic register are loaded from the specified
vector. (See vector routine document) The relative co-ordinates
stored with the pattern are added to the co-ordinates from the vector.
The pattern size is also taken from the pattern and writing proceeds.

Notes:
If expansion is to be done, the ON/OFF color must be set by the user
before calling VWRITR.

Screen Handler - (Write) System Routines

 22

SCREEN WRITE WRITR
WRITE RELATIVE

Calling Sequence: SYSTEM WRITR
 or
 SYSSUK WRITR
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (Magic Register)
 DEFW (Pattern address)
Arguments: HL = Pattern address
 A = Magic Register
 D = Y co-ordinate
 E = X co-ordinate
Output: DE = Screen Address Used
 A = Magic Register Used

Description:
The relative co-ordinates stored with the pattern are added to the
co-ordinates passed in DE. Pattern size is taken from the pattern.

Notes:
If expansion is to be done, the ON/OFF color must be set by the user
before calling WRITR.

Screen Handler - (Write) System Routines

 23

SCREEN WRITE WRITP
WRITE WITH PATTERN SIZE SCARE UP

Calling Sequence: SYSTEM WRITP
 or
 SYSSUK WRITP
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (Magic Register)
 DEFW (Pattern address)
Arguments: HL = Pattern Address
 A = Magic Register
 D = Y co-ordinate
 E = X co-ordinate
Output: DE = Screen Address Used
 A = Magic Register Used

Description:
The pattern size is taken from the pattern.

Notes:
User must worry about ON/OFF color if expansion is used.

Screen Handler - (Write) System Routines

 24

SCREEN WRITE WRIT
WRITE PATTERN

Calling Sequence: SYSTEM WRIT
 or
 SYSSUK WRIT
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (X pattern size)
 DEFB (Y pattern size)
 DEFB (Magic Register)
 DEFW (Pattern address)
Arguments: HL = Pattern Address
 A = Magic Register to use
 B = Y pattern size
 C = X pattern size
 D = Y co-ordinate
 E = X co-ordinate
Output: DE = Absolute address used
 A = Magic Register used

Notes:
User must set ON/OFF color if using expansion.

Screen Handler - (Write) System Routines

 25

SCREEN WRITE WRITA
WRITE ABSOLUTE

Calling Sequence: SYSTEM WRITA
 or
 SYSSUK WRITA
 DEFW (Absolute address)
 DEFB (X pattern size)
 DEFB (Y pattern size)
 DEFB (Magic Register)
 DEFW (Pattern address)
Arguments: HL = Pattern Address
 A = Magic Register
 B = Y Pattern size
 C = X Pattern size
 DE = Absolute screen address of upper left-
 hand corner of where to write

Notes:
This entry can be used for pattern writing to non-magic memory.
The value in A is not output to (MAGIC); it is only interrogated
to decide whether to FLOP or EXPAND.

Screen Handler - (Write) System Routines

 26

SCREEN SAVE
SAVE AREA

Calling Sequence: SYSTEM SAVE
 OR
 SYSSUK SAVE
 DEFW (save area)
 DEFB (X size)
 DEFB (Y size)
 DEFW (Screen address)
Arguments: B = Y size of area to save
 C = X size of area to save (in bytes)
 DE = Address of save area
 HL = Absolute address of upper left-hand corner
 of area to save

Description:
SAVE is used to preserve what is 'underneath' a moving pattern. SAVE
copies the indicated area of the screen to the save area. The sizes of
the area which were saved is preserved in the first two bytes of the
save area.
The save area size must be greater than or equal to the X-size times the
Y-size plus 2.
The save area may be MAGIC or non-MAGIC.

Screen Handler - (Write) System Routines

 27

SCREEN RESTORE
RESTORE AREA

Calling Sequence: SYSTEM RESTOR
 or
 SYSSUK RESTOR
 DEFW (Save area)
 DEFW (Screen address)
Arguments: DE = Save area to restore from
 HL = Absolute address of upper left-hand corner
 of area to restore

Description:
RESTORE is the inverse of SAVE. The size of the area to restore is
taken from the first two bytes of the save area.

Screen Handler - (Write) System Routines

 28

SCREEN VBLANK
BLANK FROM VECTOR

Calling Sequence: SYSTEM VBLANK
 or
 SYSSUK VBLANK
 DEFW (Vector address)
 DEFB (X size)
 DEFB (Y size)
Arguments: D = Y size
 E = X size (in bytes)
 IX = Vector address

Description:
The BLANK bit in the vector status byte is tested. If it is not set,
no blanking is done. If it is set, it is reset, then the old screen
address is taken from the vector and blanking is done. If FLOPPED is
specified by the Magic Register byte in the vector, a flopped blank is
done. VBLANK always blanks to zero.

Screen Handler - (Write) System Routines

 29

SCREEN BLANK
BLANK AREA

Calling Sequence: SYSTEM BLANK
 or
 SYSSUK BLANK
 DEFB (X size)
 DEFB (Y size)
 DEFB (Blank to)
 DEFW (Blank address)
Arguments: HL = Blank address (not MAGIC)
 B = Data to blank to
 D = Y size
 E = X size

Description:
The specified area is blanked to whatever is passed in B.

Screen Handler - (Write) System Routines

 30

SCREEN SCROLL
SCROLL WINDOW

Calling Sequence: SYSTEM SCROLL
 or
 SYSSUK SCROLL
 DEFW (line increment)
 DEFB (# of bytes)
 DEFB (# of lines)
 DEFW (first byte)
Arguments: B = Number of lines to scroll
 C = Number of bytes on line to scroll
 DE = Line increment
 HL = First byte to scroll

Description:
This routine copies NBYTES from first line +INC to first line.
Thus to scroll upward, HL points at the first line (which is over-
written) and the line increment would be positive. To scroll downward
HL points at the last line and the line increment would be negative.
The value in HL is an absolute address calculated by:
BASE OF SCREEN + #BYTES IN X OFFSET +(#lines offset*byte per line)

Note:
This routine can only be used to scroll one line at a time.

Screen Handler - (Alphanumeric) Description

 31

SCREEN ALPHANUMERIC
ALPHANUMERIC DISPLAY ROUTINES

HVGSYS provides several routines for the display of alphanumeric
information. This section provides information which is common
to all of the alphanumeric display routines.

The ASCII character code is used to represent all strings with
the following extensions:

 Characters with hex equivalents in the range 1 - 1F are
 interpreted as tabulation codes which cause the character
 display routines to skip over N character positions before
 writing the following characters.

 The characters 20H to 63H are displayed as 5 X 7 standard
 graphics with 3 pixels of horizontal spacing and 1 pixel
 of vertical spacing.

 The characters between 64H and 7FH are interpreted by STRDIS
 as control codes which cause the contents of registers C, DE,
 and IX to be changed to the value that follow the string.
 See table accompanying STRDIS.

 The characters between 80H and FFH are taken as references to
 a user supplied alternate character font.

Screen Handler - (Alphanumeric) Description

 32

The following argument/register combinations are used by all of the
alphanumeric display routines.

Register C contains the options byte formatted as shown below.

ENLARGE FACTOR specifies if the character is to be enlarged in size.
The table below defines the possible values for this parameter.

XOR/OR WRITE - All writes are performed through magic memory. Use
of one of these options causes the character to be ORed/XORed with
what was beneath it.

ON/OFF COLOR - All characters are stored one bit per pixel, but are
written two bits per pixel by use of the expander. This field specifies
the pixel values to translate the one bit per pixel representation into.
For example, the value 1101 specifies that the foreground color is 11,
and the background color is 01.

 OPTION BYTE
 +------+------+------+------+------+------+------+------+
 | ENLARGE | XOR | OR | ON | OFF |
 | FACTOR |WRITE | WRITE| COLOR | COLOR |
 +------+------+------+------+------+------+------+------+

 ENLARGE HOW MANY ENLARGED SIZE
 FACTOR TIMES LARGER OF SINGLE PIXEL

 00 1 1 X 1
 01 2 2 X 2
 10 4 4 X 4
 11 8 8 X 8

Screen Handler - (Alphanumeric) Description

 33

D Register contains the Y co-ordinate and the E register contains
The X co-ordinate. These co-ordinates give the address of the upper
left-hand corner where the first character will appear. Upon return,
these registers are updated to give the address of the character to
the right, (or below if no more space exists on the line). This
simplifies the composition of complex messages.

IX register contains the Alternate Font Descriptor. It is required
only if alternate font is reference in call. Each character must be
stored in one-bit per pixel format.

The small (3 X 5) character set is displayed using this facility. A
word in the system DOPE vector points at a standard alternate font
descriptor for this character set.

The format of the alternate font descriptor is shown below.

 +-----------------+
 IX -> 0 | BASE CHARACTER | EQUAL TO FIRST CHARACTER IN TABLE
 +-----------------+
 1 | X FRAME SIZE | CHARACTER SIZE IN BITS + X SPACING
 +-----------------+
 2 | Y FRAME SIZE | CHARACTER SIZE IN BITS + Y SPACING
 +-----------------+
 3 | X PATTERN SIZE |
 +-----------------+ EACH CHARACTER TABLE ENTRY SHOULD BE OF
 4 | Y PATTERN SIZE | SIZE X PATTERN*Y PATTERN SIZE
 +-----------------+
 5 | CHARACTER TABLE |
 | ADDRESS |
 6 | |
 +-----------------+

Screen Handler - (Alphanumeric) System Routines

 34

SCREEN ALPHANUMERIC DISNUM
DISPLAY BCD NUMBER

Calling Sequence: SYSTEM DISNUM
 or
 SYSSUK DISNUM
 DEFB (X)
 DEFB (Y)
 DEFB (options)
 DEFB (extended options)
 DEFW (number address)
Arguments: B = Extended options
 C = Standard alphanumeric options byte
 DE = Standard X,Y co-ordinate
 HL = Address of BCD number
*NOT LOADED IX = Optional character font descriptor
Outputs: DE = Updated

Description:
This routine displays the standard BCD codes 0 through 9. In addition,
the codes AH through FH are also defined. The interpretation for
these codes are: A = * B = + C = '
 D = - E = . F = /

If leading zero suppress is set, then instead of displaying a leading
zero, a space is displayed. The first non-zero nibble encountered
terminates leading zero suppression (including A - F). If the number
is zero, a single zero is displayed.

If alternate font is set, the routine will display using codes between
AAH and B9H (zero starting at B0H).

Screen Handler - (Alphanumeric) System Routines

 35

SCREEN ALPHANUMERIC DISTIM
DISPLAY TIME

Calling Sequence: SYSTEM DISTIM
 or
 SYSSUK DISNUM
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (options)
Arguments: DE = X,Y co-ordinates
 X = Options (see note below)
 IX = Alternate Font Descriptor (not loaded)
Outputs: DE = Updated

Description:
This routine displays the system time (GTMINS, GTSECS) at the co-
ordinates specified in the form MM:SS, where M=minutes, S=seconds.
Seconds are optional.

Notes:
The small character set is used and one level of enlarge factor
is permitted.
Options are the same as the alphanumeric display routine except
that bit 7=1 to display colon and seconds; bit 7=0 to suppress colon and
seconds.

Screen Handler - (Alphanumeric) System Routines

 36

SCREEN ALPHANUMERIC CHRDIS
DISPLAY CHARACTER

Calling Sequence: SYSTEM CHRDIS
 or
 SYSSUK CHRDIS
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (options)
 DEFB (Character)
Arguments: A = ASCII character to display
 C = Standard options byte
 DE = Standard Y,X co-ordinates to begin at
*NOT LOADED IX = Optional Alternate Font descriptor address
Outputs: DE = Updated to next frame

Description:
This is the basic character display primitive. If tabulation is
specified, the co-ordinates are updated but no actual writing occurs.

Notes:
Observe that IX is not loaded by the UPI SUCK facility. If alternate
font is used, IX must be loaded with alternate descriptor address.

Since this routine uses magic memory, it is not re-entrant.

Screen Handler - (Alphanumeric) System Routines

 37

SCREEN ALPHANUMERIC STRDIS
DISPLAY STRING

Calling Sequence: SYSTEM STRDIS
 or
 SYSSUK STRDIS
 DEFB (X co-ordinate)
 DEFB (Y co-ordinate)
 DEFB (options)
 DEFW (String)
Arguments: HL = String address
 C = Standard options byte
 DE = Standard Co-ordinates
*NOT LOADED IX = Alternate Font descriptor dddress
Outputs: DE = Updated to next frame

Description:
The string pointed at by HL is displayed as optioned. The string is
terminated by a zero byte.

Notes:
IX is not loaded by SUCK. STRDIS is not re-entrant.

Screen Handler - (Alphanumeric) System Routines

 38

STRDIS INTERPRETATION OF CODES 64H to 7FH

STRDIS responds to the character codes between 64H and 7FH, these codes
are taken to specify that certain registers in the context block are
to be set to new values. This facility is useful for changing size,
write mode, screen co-ordinates, or fonts, during a single STRDIS call.

The following table specifies which registers are loaded for a given
code. The order in which the new register data follows the code is
also represented.

 64H C 72H IX,D
 65H E,C 73H IX,E,D
 66H D,C 74H IX,C
 67H E,D,C, 75H IX,E,C
 68H NONE 76H IX,D,C
 69H E 77H IX,E,D,C
 6AH D 78H IX
 6BH E,D 79H IX,E
 6CH C 7AH IX,D
 6DH E,C 7BH IX,E,D
 6EH D,C 7CH IX,C
 6FH E,D,C 7DH IX,E,C
 70H IX 7EH IX,D,C
 71H IX,E 7FH IX,E,D,C

 Screen Handler - (Vectoring) Description

 39

SCREEN VECTORING - VECTORING ROUTINES

Most games involve moving patterns. Most moving patterns move along
a line. The home video game operating system provides the vectoring
routines to facilitate programming such pattern motion.

The vectoring routines work with a memory array called a vector.
Represented within this vector are the co-ordinates of an object, the
velocities of the object, and the necessary status information to
control the object. By periodically invoking the vectoring routine, this
data is updated and can be used to direct the motion of a pattern.

More formally, a vectored object possesses an X and Y co-ordinate.
Associated with these co-ordinates are velocities DELTA X and DELTA Y,
which are added to X and Y every time increment. Since the screen is
finite, there also exists two upper and lower limits X_LU, X_LL, Y_LU,
and Y_LL, the attainment of which requires some response.

The HVGSYS vectoring routine allows for two different responses to a
limit attained. Either the sign of the delta is reversed or vectoring
is stopped for this co-ordinate. This is specified by a flag byte.
When attainment occurs, this fact is indicated by a status byte. Also,
the co-ordinate is set equal to the limit that was attained, preventing
over-shoot.

Utilization of the vectoring routines involves a number of user
responsibilities. The user must properly initialize certain fields in the
vector array. He must increment the time base byte, and periodically
call the vectoring routine. Status bits must be checked and writing must
be done.

To insure high-accuracy, co-ordinates and deltas are double- precision.
The assumed binary "decimal point" is between the high and low order byte.

The following diagrams explain the layout of the vector array and the
attendant user responsibilities.

Screen Handler - (Vectoring) Description

 40

 VECTOR BLOCK

 BYTE FUNCTION HVGLIB
 NAME
 +-------------------+--------+
 0 | MAGIC REGISTER | VBMR | - DO NOT USE BIT 7
 +-------------------+--------+
 1 | VECTOR STATUS | VBSTAT |
 +-------------------+--------+
 2 | TIME BASE | VBTIMB | - INCREMENTED BY USER
 +-------------------+--------+
 3 | | VBDXL |
 | DELTA X +--------+
 4 | | VBDXH |
 +-------------------+--------+
 5 | | VBXL |
 | X +--------+
 6 | | VBXH |
 +-------------------+--------+
 7 | X CHECKS MASK | VBXCHK |
 +-------------------+--------+
 8 | | VBDYL |
 | DELTA Y +--------+
 9 | | VBDYH |
 +-------------------+--------+
 10 | | VBYL |
 | Y +--------+
 11 | | VBYH |
 +-------------------+--------+
 12 | Y CHECKS MASK | VBYCHK |
 +-------------------+--------+
 13 | OLD | VBOAL | - MAINTAINED BY USER
 | SCREEN +--------+
 14 | ADDRESS | VBOAH |
 +-------------------+--------+

 Screen Handler - (Vectoring) Description

 41

 VECTOR STATUS DETAIL
 +--------+--------+--------+--------+--------+--------+--------+--------+
 | Active | BLANK | NOT |
 | VBSACT | VBBLNK | USED |
 +--------+--------+--------+--------+--------+--------+--------+--------+

ACTIVE Set by user to indicate that vector is active. The
 vectoring routines will do no processing if reset.

BLANK Must be initialized by user to reset state. Thereafter
 this bit is maintained by the VWRIT and VBLANK
 system routines.

 CHECKS MASK DETAIL
 +--------+--------+--------+--------+--------+--------+--------+--------+
 | NOT | LIMIT | NOT |REVERSE | LIMIT |
 | |ATTAINED| | DELTA | CHECK |
 | USED | | USED | SIGN | |
 | | VBCLAT | | VBCREV | VBCLMT |
 +--------+--------+--------+--------+--------+--------+--------+--------+

LIMIT CHECK Set by user to indicate that this co-ordinate is
 to be limit checked.

REVERSE DELTA Set by user to indicate that when this co-ordinate
 attains it's limit, the sign of the associated delta
 is to be reversed. This can be used to cause objects
 to 'bounce' off barriers.
LIMIT ATTAINED Set by system if the limit was attained this call.
 Otherwise it is reset. If the delta was not changed,
 either by Reverse Delta or user, this bit will stay set.

Screen Handler - (Vectoring) System Routines

 42

SCREEN VECTORING VECT
VECTOR OBJECT IN TWO DIMENSIONS

Calling Sequence: SYSTEM VECT
 or
 SYSSUK VECT
 DEFW (Vector address)
 DEFW (Limit table)
Arguments: HL = Limit table address
 IX = Vector address (points at VBMR)
Output: C = Time base used
 Z = True, if it did not move

Description:
If the vector is inactive, control is returned immediately. Otherwise
VECTC is called for X, then Y. The zero status is determined by
comparing the new co-ordinate value with it's old value. If the
high-order byte changed, then the object moved. Zero status set if
object did not move, reset if object moved.

 Screen Handler - (Vectoring) System Routines

 43

SCREEN VECTORING VECTC
VECTOR A CO-ORDINATE

Calling Sequence: SYSTEM VECTC
 or
 SYSSUK VECTC
 DEFW (co-ordinate address)
 DEFW (Limit table)
Arguments: IX = Pointer to low-order byte of delta for co-ordinate
 HL = Limits table for THIS CO-ORDINATE (if required)
 C = Time base to use

Description:
This routine operates on the subset of the vector array associated with
a single co-ordinate. This subset consists of the delta co-ordinate
and checks mask. This entry is provided so special vectoring schemes
may be implemented such as 1 dimensional or 3 dimensional vectoring.

This entry adds the delta to the co-ordinate time base times. It then
performs the limit checks for the co-ordinate if optioned.

Note that this entry DOES NOT interrogate or alter any bytes in the
vector array outside of the defined subset. Hence the active bit
isn't checked.

Screen Handler - System Routines

 44

SCREEN RELABS
CONVERT RELATIVE CO-ORDINATES TO ABSOLUTE MAGIC ADDRESS AND
SET UP MAGIC REGISTER

Calling Sequence: SYSTEM RELABS
 or
 SYSSUK RELABS
 DEFB (Magic register value)
Arguments: A = Magic register value to set
 D = Y co-ordinate
 E = X co-ordinate
Output: A = Magic register value, with proper shift amount set
 DE = Absolute memory address (MAGIC)

Description:
The low-order two bits of the X co-ordinate are inserted into the magic
register value bitstring. The absolute memory address corresponding to
the co-ordinate is computed, taking into consideration the value of the
flopped bit. The co-ordinate systems used are shown below.

 0 ---> 159 159 <--- 0
 0 +----------------------------+ +----------------------------+
 | | | | 0
 | | | | | |
 | | | |
 | | NORMAL | | FLOPPED | |
 | | CO-ORDINATE | | CO-ORDINATE | |
 V | SYSTEM | | SYSTEM | V
 | (FLOPPED BIT RESET) | | (FLOPPED BIT SET) |
 | | | |
101 | | | | 101
 +----------------------------+ +----------------------------+

Proofing Note: 160/102 = 1.57 - Actual Screen Aspect Ratio

 Screen Handler - System Routines

 45

SCREEN RELAB1
CONVERT RELATIVE ADDRESS TO ABSOLUTE NORMAL ADDRESS

Calling Sequence: SYSTEM RELAB1
 or
 SYSSUK RELAB1
 DEFB (Magic register value)
Arguments: A = Magic register value to combine with shift amount
 D = Y co-ordinate
 E = X co-ordinate
Output: A = Combined magic register value
 DE = Absolute normal address (not magic)

Description:
This routine is identical to RELABS except that a non-magic address
is returned and the hardware magic register is not set. The flopped
bit is interrogated and the flopped co-ordinate system is used,
if optioned.

Screen Handler - System Routines

 46

SCREEN COLSET
SET COLOR REGISTERS

Calling Sequence: SYSTEM COLSET
 or
 SYSSUK COLSET
 DEFW (Address of color list)
Inputs: HL = Color list laid out
 COL3L = first to
 COLOR last i.e.: COLOR would be at a higher
 address than COL3L

Description:
This routine sets color registers and saves address of colors for
use by PIZBRK and BLAKOUT for color restoration.

[Proofing Note: BLAKOUT is seven letters (limit is six). I can not find
 anything close to this in the manual. Thoughts? Dec 16, 2001]

 Human Interface - System Routines

 47

HUMAN INCSCR
INCREMENT SCORE AND COMPARE TO END SCORE

Calling Sequence: SYSTEM INCSCR
 or
 SYSSUK INCSCR
 DEFW (address of score)
Arguments: HL = Address of score (must be 3 bytes long)
Output: Score incremented and optionally game over bit set

Description:
The 3 byte score pointed at by HL (BCD with low order byte at lowest
address) is incremented (by 1) and compared to the end score (ENDSCR).
If the end score bit (GSBSCR) was set in the game status byte (GAMSTB)
and end score has been reached, then the game over bit (GSBEND) is set
in the game status byte.

Human Interface - System Routines

 48

HUMAN PAWS
PAUSE

Calling Sequence: SYSTEM PAWS
 or
 SYSSUK PAWS
 DEFB (number of interrupts)
Arguments: B = Number of interrupts to wait

Description:
This routine provides for a pause for a certain number of interrupts.
If used with ACT INT, 60 will be a 1-second pause. This routine
does an EI upon entry and assumes interrupts will occur.

 Human Interface - System Routines

 49

HUMAN KEYBOARD KCTASC
KEY CODE TO ASCII

Calling Sequence: SYSTEM KCTASC

Arguments: B = Key code (Not loaded)

Output: A = ASCII equivalent of keycode

Description: This routine does a table look-up

KEYCODE NAME GRAPHIC HEX VALUE
------- ---- ------- ---------

1 Clear C 43
2 Up Arrow * 5E
3 Down Arrow * 5C
4 Percent % 25
5 Recall MR 52
6 Store MS 53
7 Change Sign CH 3B
8 Divide * 2F
9 7 7 37
10 8 8 38
11 9 9 39
12 Times X 2A
13 4 4 34
14 5 5 35
15 6 6 36
16 Minus - 2D
17 1 1 31
18 2 2 32
19 3 3 33
20 Plus + 2B
21 Clear Entry CE 26
22 0 0 30
23 Decimal Point . 2E
24 Equals = 3D

* - Three names ('Up Arrow,' 'Down Arrow,' and 'Divide') do not have ASCII
equivalent graphic marks. An asterisk is NOT printed on screen. Instead, the
BPA uses three different non-ASCII symbols. Each graphic looks as the name
describes.

Human Interface - System Routines

 50

HUMAN CONTROLS & KEYPAD SENTRY
SENSE TRANSITION

Calling Sequence: SYSTEM SENTRY
 or
 SYSSUK SENTRY
 DEFW (Key mask address)
Arguments: DE = Keypad mask table

Description:
SENTRY checks for changes in the potentiometers (pots), control
handles, triggers, keypad, semaphores and counter/timers. It also
takes care of blackout. Blackout is the automatic blacking-out of
the screen after 255 seconds without a change. If SENTRY isn't called
then the game will not black out.

SENTRY checks if TIMOUT equals 0 on entry and if zero, it goes to
PIZBRK. If a key has gone down or a control handle changed, then TIMOUT
is set to FFH.

HL should point at a keypad mask. The keypad consists of 6 rows
by 4 columns.

Example mask of DEFB 011100B
just 0-9 DEFB 111100B
 DEFB 011100B
 DEFB 000000B

See diagram on following page.

 Human Interface - System Routines

 51

 +-------------+------------+------------+------------+
| 1 | 2 | 3 | 4 |
| C | Up | Down | % | 0
| | Arrow | Arrow | |
+-------------+------------+------------+------------+
| 5 | 6 | 7 | 8 |
| MR | MS | CH | Division | 1
| | | | Symbol |
+-------------+------------+------------+------------+
| 9 | 10 | 11 | 12 |
| 7 | 8 | 9 | X | 2
| | | | | MASK
+-------------+------------+------------+------------+ BIT
| 13 | 14 | 15 | 16 | NUMBER
| 4 | 5 | 6 | - | 3
| | | | |
+-------------+------------+------------+------------+
| 17 | 18 | 19 | 20 |
| 1 | 2 | 3 | + | 4
| | | | |
+-------------+------------+------------+------------+
| 21 | 22 | 23 | 24 |
| CE | 0 | . | = | 5
| | | | |
+-------------+------------+------------+------------+

 1 2 3 4

 MASK BYTE NUMBER

 +-------------+
 KEY NUMBER ----- * |
 | * ---------- FUNCTION
 | |
 +-------------+

Human Interface - System Routines

 52

Output: A = Return Code
 B = Extended Code

PRIORITY A= MEANING
-------- -- -------

 SNUL Nothing Changed
1 SCT0 Counter/Timer 0 decremented by 0
 to
1 SCT7 Counter/Timer 7 decremented to 0
2 SF0 SEMI4S bit 0 was 1
 to
2 SF7 SEMI4S bit 7 was 1
4 SSEC 1 second has elapsed since the last SSEC
5 SKYU Keypad went from down to up B=0
5 SKYD Key is down B=key number
3 SP0 POT 0 changed B=new value
 to
3 SP3 Pot 3 changed B=new value
6 SJ0 Joystick 0 changed B=new value
 to
6 SJ3 Joystick 3 changed B=new value
6 ST0 Trigger 0 changed B=new value
 to
6 ST3 Trigger 3 changed B = new value

Notes:

The potentiometers (pots) are debounced. New trigger value=Trigger
off (0) or trigger on (10H). When switches are actuated simultaneously
the order of return is: SCT7 TO SCT0, SF7 TO SF0, SP0 TO SP3, SSEC,
SKYU, SKYD, SJ0, ST0, SJ1, ST1, SJ2, ST2, SJ3, ST3.

 Human Interface - System Routines

 53

HUMAN CONTROL DOIT
RESPOND TO INPUT TRANSITION

Calling Sequence: SYSTEM DOIT
 or
 SYSSUK DOIT
 DEFW (Do table)
Arguments: A = SENTRY return code
 B = Extended return code
 HL = Do table address

Description:
The SENTRY return code is used to search the DOTABLE. If the
transition is present in DOTABLE, then control is transferred to the
associated handling routine. The handling routine may be MACRO or
machine instructions. The routine receives registers as they are on
DOIT entry. If no transition is found, execution continues at the
first instruction following call. The DOTABLE is a linear list
composed of 3 byte entries, 1 entry per SENTRY return code.

 +--------+--------+--------+--------+--------+--------+--------+--------+
 | TRANSFER | RETURN |
 | TYPE | CODE |
 +--------+--------+--------+--------+--------+--------+--------+--------+
 | |
 | HANDLER ADDRESS |
 | |
 +---+

Where transfer type designates how handler address is to be transferred
to. The codes are: 00=JMP to machine language routine and pop
context; 01=RCALL machine language routine in current context; 10=MCALL
interpreter routine in current context. Mode 01 and 10 expect the
returned-to point to be interpretive, mode 0 expects it to be machine
instructions.
End of list is indicated by a terminator byte which is greater than or
equal to C0H.

Human Interface - System Routines

 54

HUMAN CONTROL PIZBRK
"COFFEE BREAK" BLACK OUT SCREEN AND WAIT FOR KEY

Calling Sequence: SYSTEM PIZBRK
 or
 SYSSUK PIZBRK
Input: None
Output: None

Description:
This routine blacks out the screen and waits for either a key press
or a trigger or a joystick change.
This function should be called whenever a "hold until further notice"
is needed.

All keys on the keypad are enabled. Interrupts are disabled on
entry and enabled on exit. It is a good idea to reset any 60th of a
second timers on exiting PIZBRK.

 Human Interface - System Routines

 55

HUMAN CONTROLS EXAMPLE

This routine echoes number keys and takes a coffee break on trigger
0 being pulled. Assumes SP is set and screen erases.

 SYSTEM INTPC
 LOOP: DO SENTRY
 DEFW NUMBAS
 DO DOIT
 DEFW DTAB
 DO MJUMP
 DEFW LOOP

 NUMBAS: DEFB 011100B ;NUMBER KEYS ONLY
 DEFB 111100B
 DEFB 011100B
 DEFB 0

 DTAB: MC SKYD,SHOW ;IN KEY DOWN MACRO CALL
 MC ST0,PBREAK+END ;ON TO MACRO CALL

 SHOW: DO KCTASC ;CONVERT TO ASCII
 DO SUCK
 DEFB 00000111B ;X,Y=0=DE
 DEFB 11001100B ;OPTIONS=C
 DONT CHRDIS ;DISPLAY CHAR
 MRET ;BACK TO LOOP

 PBREAK: DO PIZBRK ;COFFEE BREAK
 DO MRET ;BACK TO LOOP

Interrupts - (Music Processor) Description

 56

INTERRUPT MUSIC PROCESSOR

The music processor can be thought of as an independent CPU handling
all output to the music/noise ports. The MUZCPU has 4 registers:

 MPC: Like all program counters, points to the next
 data byte to fetch.
 MSP: Like a stack pointer, points to return
 address in the stack.
 Duration: Is loaded at the start of a note and then
 decremented every 60th of a second
 Voice: Is a status register. It tells which voices
 (tones) to load with what data.

The voices status register is shown below. Execution proceeds
right-to-left. Make sure that you always have at least one PC
incrementing bit or load on.

 +--------+--------+--------+--------+--------+--------+--------+--------+
 | INC | OUT | INC | OUT | INC | OUT | OUT | OUT |
 | PC | TONE A | PC | TONE B | PC | TONE C | VIBRA | VOLN |
 +--------+--------+--------+--------+--------+--------+--------+--------+

 Interrupts - (Music Processor) Description

 57

MUZCPU INSTRUCTION SET

OF BYTES MNEMONIC COMMENT
---------- -------- -------

 2 VOICES,(data) ;VOICES=(data)
 2 MASTER,(data) ;TONE0=(data)
 3 CALL,(address) ;(SP)=(PC+3) PC=address
 1 RET ;PC=(SP++)
 3 JP,(address) ;PC=address
 2 NOTE1 ;Duration, note or data (D1)
 3 NOTE2 ;Duration, D1,D2
 4 NOTE3 ;Duration, D1,D2,D3
 5 NOTE4 ;Duration, D1,D2,D3,D4
 6 NOTE5 ;Duration, D1,D2,D3,D4,D5
 2 REST ;Duration in 60ths of a second
 ;Pauses silently (except legato)
 1 QUIET ;Stops music and sets volume=0
 2 OUTPUT ;Port #, Data
 9 OUTPUT ;SNDBX,DATA10,D11,D12,D13,D14,D15,D16,D17
 3 VOLUME ;(VOLAB),(VOLMC) sets volume for notes
 1 PUSHN ;Push # between 1-16 onto the stack
 1 CREL ;Call relative to next instruction
 3 DSJNZ ;decrement stack top and jump
 ;if not 0, else pop stack
 1 LEGSTA ;flips between STACATO and LEGATO modes
 ;STACATO is clipped 1/60th before the
 ;end of each note
 ;LEGATO allows one note to run into
 ;the next

Note: All durations are limited to a maximum of 127

Interrupts - (Music Processor) Description

 58

MUSIC SCORE EXAMPLE

 VOICES 11010100B ;ABC=DATA 1
 MASTER 0A1H ;ABC=1/2
 VOLUME 88H,08H
 NOTE1 12,A1
 NOTE1 12,C2
 NOTE1 24,E2
 NOTE1 12,C2
 NOTE1 12,E2
 REST 6
 VOICES 11110110B ;Suck in Vibrato, AB and C bytes
 NOTE3 12,14,A2,E2
 QUIET

 Interrupts - (Music Processor) System Routines

 59

INTERRUPTS MUSIC BMUSIC
BEGIN PLAYING MUSIC

Calling Sequence: SYSTEM BMUSIC
 or
 SYSSUK BMUSIC
 DEFW (Music stack)
 DEFB (voices byte)
 DEFW (Score)
Arguments: A = Voices to start with
 HL = MUSIC PC (Score)
 IX = Music SP

Description:
Quiets any previous music, then interprets "score". See music
processor for more information.

Interrupts - (Music Processor) System Routines

 60

INTERRUPTS MUSIC EMUSIC
STOP MUSIC

Calling Sequence: SYSTEM EMUSIC
 or
 SYSSUK EMUSIC
Arguments: NONE
Outputs: NONE

Description:
Outputs 0 to volume ports and halts music processor.

 Interrupts - System Routines

 61

INTERRUPTS ACTINT
ACTIVE INTERUPTS

Calling Sequence: SYSTEM ACTINT
 or
 SYSSUK ACTINT
Input: NONE
Output: NONE
Function: Sets IM=2, INLIN=200, sets I reg + INFBK
 Calls TIMEX and TIMEY
 Enables interrupts

Description:
Once ACTINT is called, it provides interrupt service completely
automatically. It runs the seconds timer, the game timer, the music
processor, and black-out timers, plus CT0, CT1, CT2, CT3. Functions
as 60th of a second timers.

Interrupts - System Routines

 62

INTERRUPTS TIMERS DECCTS
DECREMENT COUNTER/TIMERS

Calling Sequence: SYSTEM DECCTS
 or
 SYSSUK DECCTS
 DEFB (Mask)
Input: C = Mask indicative which counters to decrement.
Output: Sentry will notify the program.

Description:
Decrements counter if they are non-zero. If any go from 1 to 0,
sentry is notified.

 Interrupts - System Routines

 63

INTERRUPTS TIMERS CTIMER

Calling Sequence: CALL CTIMER
Input: HL = Address of custom time base
 B = Value to load into time base 1 to 0 transition
 C = CT mask as in DECCTS

Description:
HL is loaded and decremented. If it is not = 0, then a return is
executed. Else, HL is loaded with B and DECCTS is called.

Registers HL, DE, BC, and AF are undefined upon exit.

Interrupts - System Routines

 64

INTERRUPTS TIMERS STIMER
DECREMENT TIMERS

Calling Sequence: PUSH AF
 PUSH BC
 PUSH DE
 PUSH HL
 CALL STIMER
 POP HL
 POP DE
 POP BC
 POP AF
Input: NONE
Description: STIMER keeps track of game time. If it hits 0,
 then the GSBEND bit in the game status byte is set.
Uses: AF, BC, DE, HL
Calls: Music processor on note (duration) expiration.
Note: Sets bit 7 of key sex to 1 on every second.

 Math [Move/Storage] - System Routines

 65

MOVE MOVE BYTES

Calling Sequence: SYSTEM MOVE
 or
 SYSSUK MOVE
 DEFW (Destination)
 DEFW (Number of bytes)
 DEFW (Source)
Arguments: DE = Destination address
 HL = Source address
 BC = Number of bytes to transfer

Description: MOVE uses LDIR to copy bytes from source
 to destination.

Math [Move/Storage] - System Routines

 66

INDEXN INDEX NIBBLE

Calling Sequence: SYSTEM INDEXN
 or
 SYSSUK INDEXN
 DEFW (Base Address)
Arguments: C = Nibble displacement (0 - 255)
 HL = Base address of table
Output: A = Nibble value

Description:
INDEXN is used to look up a given nibble in a liner list.
The indexing works like:

 +-------+-------+
 BASE ADDRESS | 1 | 0 |
 +-------+-------+
 1 | 3 | 2 |
 +-------+-------+
 2 | 5 | 4 |
 +-------+-------+
 3 | 7 | 6 |
 +-------+-------+
 . | | |
 . | | |

 Math [Move/Storage] - System Routines

 67

STOREN STORE NIBBLE

Calling Sequence: SYSTEM STOREN
 or
 SYSSUK STOREN
 DEFW (Base address)
Arguments: C = Nibble displacement *NOT LOADED
 HL = Base address
 A = Nibble value to store *NOT LOADED

Description: STOREN is the inverse of INDEXN.
 STOREN works as with INDEXN.

Math [Move/Storage] - System Routines

 68

INDEXW INDEX WORD

Calling Sequence: SYSTEM INDEXW
 or
 SYSSUK INDEXW
 DEFW (Base address)
Arguments: A = Displacement (0 - 255) *NOT LOADED
 HL = Base address of table
Output: DE = Entry looked up
 HL = Address of entry looked up
Description: Indexing looks like:

 DISPLACEMENT
 +---------------+
 BASE ADDRESS | | 0
 +---------------+
 1 | |
 +---------------+
 2 | | 1
 +---------------+
 3 | |
 +---------------+
 4 | | 2
 +---------------+
 5 | |
 +---------------+
 . | | .
 . | |

 Math [Move/Storage] - System Routines

 69

INDEXB INDEX BYTE

Calling Sequence: SYSTEM INDEXB
 or
 SYSSUK INDEXB
 DEFW (Base Address)
Arguments: A = Displacement (0 - 255)
 HL = Base address of table
Output: A = Entry looked up
 HL = Address of entry looked up

Notes:
INDEXB returns the byte at address
 (Base address) + (Displacement)

Math [Move/Storage] - System Routines

 70

SETB STORE BYTE

Calling Sequence: SYSTEM SETB
 or
 SYSSUK SETB
 DEFB (Value to store)
 DEFW (Address)
Arguments: A = Byte value to store
 HL = Address to be set
Description: Stores an 8-bit value at a specified address.

 Math [Move/Storage] - System Routines

 71

SETW STORE WORD

Calling Sequence: SYSTEM SETW
 or
 SYSSUK SETW
 DEFW (Value to store)
 DEFW (Address)
Arguments: DE = Word value to store
 HL = Address to be set

Description: Stores a 16-bit value at a specified address.

Cartridge Conventions - Description

 72

CARTRIDGE CONVENTIONS

Two types of cartridges may be used with the Bally Professional Arcade.
The first type, called an autostart cartridge, is entered immediately
after reset. The only initialization that is performed before entry
is the set-up of the stack pointer to point just below system RAM and
the establishment of "consumer mode" in the custom chips. RAM is not
altered in this mode.

The second type, called a standard cartridge, is entered after a game
selection process is completed. Considerably more initialization is
done by the system before control transfer.

 1) System RAM is cleared to 0
 2) The ACTINT interrupt routine is enabled
 3) The MENU colors are set in the left color map
 4) Vertical blank is set at line 96, horizontal
 boundary at 41, and interrupt mode at 8.
 5) The screen displays the menu frame.
 6) The shifter is cleared.

An autostart cartridge is indicated by a jump instruction (opcode C3H)
at location 2000H. This jump instruction should branch to the starting
address of the cartridge.

A standard cartridge is indicated by a sentinel byte of 55H at location
2000H. Following this byte is the first node of the cartridge's menu
data structure. This data structure gives the name and starting
address of each program in the cartridge. (See MENU)

 Cartridge Conventions - Description

 73

When the user has selected a cartridge game, control is transferred
to the starting address with the address of the program name string
in the registers. The cartridge program will use the GETPAR system
routine to prompt for game parameters such as score to play to,
game time limit or number of layers.

The cartridge has access to the six unused restart instructions. See
the following cartridge diagram for the transfer vectors.

Cartridge Conventions - Cartridge Map

 74

BYTE
 +-----+-----+-----+-----+-----+-----+-----+-----+
2000 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | SENTINEL ($55)
 +-----+-----+-----+-----+-----+-----+-----+-----+ \
 1 | | |
 2 | NEXT MENU NODE | |
 +---+ | MENU NODE FOR
 3 | | > FIRST GAME ON
 4 | STRING ADDRESS FOR FIRST GAME | | CARTRIDGE
 +---+ |
 5 | | |
 6 | START ADDRESS FOR FIRST GAME | |
 +---+ /
 7 | | \
 8 | RST 8 | |
 9 | JUMP VECTOR | |
 +---+ |
 A | | |
 B | RST 16 | |
 C | | |
 +---+ |
 D | | |
 E | RST 24 | |
 F | | |
 +---+ | THESE CELLS
2010 | | | MAY BE USED
 1 | RST 32 | | FOR PROGRAM
 2 | | > IF THE
 +---+ | ASSOCIATED
 3 | | | RST OR HOOK
 4 | RST 40 | | IS NOT USED
 5 | | |
 +---+ |
 6 | | |
 7 | RST 48 | |
 8 | | |
 +---+ |
 9 | | |
 A | SENTRY HOOK TRANSFER VECTOR | |
 B | USED FOR DEMO PROGROMS | |
 +---+ /

 Cartridge Conventions - (Human Interface) System Routines

 75

HUMAN GETPAR
GET GAME PARAMETER

Calling Sequence: SYSTEM GETPAR
 or
 SYSSUK GETPAR
 DEFW (Prompt)
 DEFB (Digits)
 DEFW (Parameter)
Arguments: A = Number of digits to get
 BC = Address of prompt string
 DE = Title string address *NOT LOADED
 HL = Address of parameter to get

Description:
A menu frame is created displaying the title passed in DE at the top.
The message "ENTER" is displayed in the center of the screen followed
by the prompt string. GETNUM is entered with feedback specified
in 2X enlarged characters. After entry is complete, GETPAR pauses
for 1/4 second to allow user to see his entry and then returns.

Notes:
See entry conditions and resource requirements for menu.
Prompt string example: "# OF PLAYERS"
The title string address (DE) is usually the title returned from MENU.
The address of parameter to get (HL), HL points at the low-order byte
of BCD number in RAM.

Cartridge Conventions - (Human Interface) System Routines

 76

HUMAN MENU
DISPLAY MENU AND BRANCH ON SELECTION

Calling Sequence: SYSTEM MENU
 or
 SYSSUK MENU
 DEFW (Title)
 DEFW (List)
Arguments: DE = Address of menu title string
 HL = Address of menu list
Output: DE = String address of selection mode

Description:
The title is displayed at the top of the screen. Each entry in the
menu list is then displayed with a preceding number supplied by MENU.
GETNUM is called to get the selection number. The menu list is searched
for the selected node and it is jumped to.

Notes:
A maximum of eight entries may appear.
On entry, MENU expects interrupts to be enabled, colors and boundaries
to be set up. MENU uses 96 lines of screen, creams the alternate set,
and requires three levels of context. MENU calls SENTRY and thus 'eats'
all irrelevant transitions.

 +----------+
 | NEXT | ADDRESS OF NEXT NODE ON LIST
 | | ZERO IF THIS NODE IS LAST
 +----------+
 | STRING | ADDRESS OF NAME OF THIS SELECTION
 | | THIS IS WHAT IS PASSED IN DE
 +----------+
 | GO TO | WHERE TO BRANCH TO IF THIS
 | | SELECTION IS SELECTED
 +----------+

Proofing Note: 'creams the alternate set' = 'creates the alternate set?'

 Cartridge Conventions - (Human Interface) System Routines

 77

HUMAN GETNUM
GET NUMBER

Calling Sequence: SYSTEM GETNUM
 or
 SYSSUK GETNUM
 DEFB (X address)
 DEFB (Y address)
 DEFB (CHRDIS options)
 DEFB (DISNUM options)
 DEFW (Number address)
Arguments: B = Display number routine options
 C = Character display routine options
 DE = Y,X co-ordinate for feedback
 HL = Address of where to put entered number

Description:
This routine inputs a number from either the keypad or the pot on
control handle of player one. Keypad entry has priority. The routine
exits when the specified number of digits were entered or = is pressed
on the keypad.

Pot entry is enabled by pressing the trigger. The current pot value is
then shown. Twist the pot until the number you want is shown. Then
press the trigger again to complete the entry. The pot can only enter 1
or 2 digits. If a group of numbers is being entered, the user must
enable entry for each new number.

Cartridge Conventions - (Human Interface) System Routines

 78

 DISPLAY NUMBER OPTIONS
 +------+------+------+------+------+------+------+------+
 | ZERO | ALT | NUMBER OF DIGITS TO DISPLAY/ACCEPT |
 | SUPP | FONT | | | | | | |
 +------+------+------+------+------+------+------+------+

 CHARACTER DISPLAY OPTIONS
 +------+------+------+------+------+------+------+------+
 | ENLARGE | XOR | OR | ON | OFF |
 | FACTOR | | | COLOR | COLOR |
 +------+------+------+------+------+------+------+------+

 Cartridge Conventions - (Human Interface) System Routines

 79

HUMAN MSKTD
JOYSTICK MASK TO DELTAS

Calling Sequence: SYSTEM MSKTD
 or
 SYSSUK MSKTD
 DEFW (X Delta)
 DEFB (Flop flag)
 DEFW (Y Delta)
Arguments: B = Joystick mask *NOT LOADED
 C = Flop flag
 DE = X positive delta
 HL = Y positive delta
Output: DE = X Delta
 HL = Y Delta

Description:
This routine uses the joystick mask and flop flag to conditionally
modify the passed deltas. If negative direction is indicated, the delta
is 2's complemented: if no direction is indicated, 0 is returned.

Note: B is not sucked [by SYSSUK].

Cartridge Conventions - (Math) System Routines

 80

MATH RANGED
RANGED RANDOM NUMBER

Calling Sequence: SYSTEM RANGED
 or
 SYSSUK RANGED
 DEFB (N)
Arguments: A = N where 0 is less than or equal to a random
 number less than N
 (ie: for a random number of 0,1,or 2, N=3)
Output: A = Random Number

Notes:
If N is a power of 2, it is considerably faster to use N=0 which causes
an 8-bit value to be returned without ranging. Use an AND instruction
to range it yourself.

This routine uses a polynomial shift register RANSHT in system RAM.
RANGED is called in GETNUM while waiting for game selection/parameter
entry. Thus each execution of a program will receive different random
numbers. For 'predictable' random numbers, alter RANSHT yourself after
parameter acceptance.

System Description

 81

Introduction

The Bally Professional Arcade is a full-color video game system based
on the mass-ram-buffer technique. A mass-ram-buffer system is one in
which one or more bits of RAM are used to define the color and
intensity of a pixel on the screen. The picture on the screen is
defined by the contents of RAM and can easily be changed by modifying RAM.

The system uses a Z-80 Microprocessor as it's main control unit. The
system ROM has software for four games: Gunfight, Checkmate,
Scribbling, and Calculator. Additional ROM can be accessed through
the cartridge connector. Three custom chips are used
for the video interface, special video processing functions, keyboard
and control handle interface, and audio generation.

The system exists in both high-resolution and low-resolution models.
The three custom chips can operate in either mode. The mode of operation
is determined by bit 0 of output port 8H. It must be set to 0
for low-resolution and 1 for high-resolution. This bit is not set
to 0 at power up and must be set by software before any RAM operations
can be performed.

System Description

 82

Memory Map

In both the low and high resolution models, the operating system
ROM is in the first 8K of memory space. The cartridge ROM
is in the space from 8K to 16K. The standard screen RAM begins
at 16K. In the low-resolution unit, standard screen RAM is 4K
bytes; in the high-resolution unit it is 16K bytes. Magic screen RAM
begins at location 0. It is the same size as standard screen RAM. All
memory above 32K is available for expansion. In the low-resolution
unit, memory space 20K - 32K is available for expansion.

When data is read from a memory location between 0 and 16K the data
comes from the ROM. When data is written in a memory location (X)
between 0 and 16K, the system actually writes a modified form of the
data in location X+16K. The modification is performed by the magic
system in the Data Chip and Address Chip. Thus the RAM from 0 to 16K
is called Magic Memory.

System Description

 83

Memory Map - Low-Resolution

System Description

 84

Memory Map - High-Resolution

System Description

 85

Screen Map

In the Bally Professional Arcade, two bits of RAM are used to define
a pixel on the screen. One 8-bit byte of RAM therefor defines four
pixels on the screen.

In the low-resolution model there are 40-bytes used to define a line
of data. This gives a horizontal resolution of 160 pixels. The
vertical resolution is 102 lines. The screen therefor requires
102 X 40 = 4,080 bytes. The remaining 16 bytes of the 4K RAM are used
for scratch pad. More of the RAM may be used for scratchpad by blanking
the screen before the 102nd line. This will be described later.

In the High-resolution model there are 80 bytes and 320 pixels per line.
The 204 lines require 16,320 bytes of RAM. 64 bytes of the 16K RAM are
left for scratch pad.

In both models the first byte of RAM is in the upper left-hand corner
of the screen. As the RAM address increases, the position on the screen
moves in the same directions as the TV scan; from left-to-right and
from top-to-bottom. The four pixels in each byte are displayed with
the least significant pixel, the one defined by bits 0 and 1, on
the right.

System Description

 86

Screen Map - Low Resolution

System Description

 87

Screen Map - High Resolution

System Description

 88

Color Mapping

Two bits are used to represent each pixel on the screen. These two
bits, along with the LEFT/RIGHT bit which is set by crossing the
horizontal color boundary, map each pixel to one of eight different color
registers. The value in the color register then defines the color and
intensity of the pixel on the screen. The intensity of the pixel is
defined by the three least significant bits of the register, 000 for
darkest and 111 for lightest. The color is defined by the five most
significant bits. The color registers are at output ports 0 through 7;
register 0 at port 0, register 1 at port 1, etc.

The color registers can be accessed as individual ports or all eight
can be accessed by the OTIR instruction. The OTIR instruction is to
port BH (register C=BH) and register B should be set to 8. The eight
bytes of data pointed to by HL will go to the color registers.

 HL --> Memory Location X Color Register 7
 X+1 Color Register 6
 X+2 Color Register 5
 X+3 Color Register 4
 X+4 Color Register 3
 X+5 Color Register 2
 X+6 Color Register 1
 X+7 Color Register 0

The horizontal color boundary (bits 0-5 of port 9) defines the horizontal
position of an imaginary vertical line on the screen. The boundary
line can be positioned between any two adjacent bytes in the low-
resolution system. The line is immediately to the left of the byte
whose number is sent to bits 0-5 of port 9. For example, if the horizontal
color boundary is set to 0, the line will be just to the left of
byte 0; if it is set to 20, the line will be between bytes 19 and 20 in
the center of the screen.

System Description

 89

If a pixel is to the left of the boundary, its LEFT/RIGHT bit is set
to 1. The LEFT/RIGHT bit is set to 0 for pixels to the right of the
boundary. Color registers 0-3 are used for pixels to the right of the
boundary and registers 4-7 are used for pixels to the left of the
boundary.

In the high-resolution system, the boundary is placed in the same
position on the screen but between different bytes. If the value X
is sent to the horizontal color boundary, then the boundary will be
between bytes 2X and 2X-1. If the value 20 is sent, the boundary will
be between 39 and 40, in the center of the screen.

To put the entire screen, including the right side background, on
the left side of the boundary, set the horizontal color boundary to 44.

BACKGROUND COLOR

On most televisions the area defined by RAM is slightly smaller than the
screen. There is generally extra space on all four sides of the RAM
area. The color and intensity of this area is defined by the background
color number (bits 6 and 7 of port 9). These two bits, along with
the LEFT/RIGHT bit point to one of the color registers which determines
the color and intensity.

System Description

 90

VERTICAL BLANK

The Vertical Blank Register (output port AH) contains the line number
on which vertical blanking will begin. In the low-resolution system
bit 0 should be set to 0 and the line number should be in bits 1-7.
In the high-resolution system the line number is in bits 0-7. The
background color will be displayed from the vertical blank line to the
bottom of the screen. This allows the RAM that would normally be
displayed in that area to be used for scratch pad. If the vertical
blank register is set to 0 the entire RAM can be used for scratch pad.
In a low-resolution system the register must be set to 101 or less;
in a high-resolution system it must be set to 203 or less.

SUMMARY

The following color register map shows which color registers are used
to define colors in different areas of the screen. The map assumes the
background color is set to 0. If it were set to 1 then color registers
1 and 5 would be used for background instead of 0 and 4. In the low-
resolution system the color boundary is between bytes X and X-1. In
the high-resolution system the boundary is between bytes 2X and 2X-1.

System Description

 91

COLOR REGISTER MAP

System Description

 92

INTERRUPT FEEDBACK

When the Z-80 acknowledges an interrupt it reads 8 bits of data from
the data bus. It then uses this data as an instruction or an address.
In the Bally Professional Arcade this data is determined by the contents
of the interrupt feedback register (output port DH). In responding
to a screen interrupt the contents of the interrupt feedback register
are placed directly on the data bus. In responding to a light pen
interrupt the lower four bits of the data bus are set to 0 and the upper
four bits are the same as the corresponding bits of the feedback register.

INTERRUPT CONTROL BITS

In order for the Z-80 to be interrupted the internal interrupt enable
flip-flop must be set by an EI instruction and one or two of the external
interrupt enable bits must be set (output port EH). If bit 1 is set,
light pen interrupts can occur. If bit 3 is set, screen interrupts can
occur. If both bits are set, both interrupts can occur and the screen
interrupt has higher priority.

The interrupt mode bits determine what happens if an interrupt occurs
when the Z-80's interrupt enable flip-flop is not set. Each of the two
interrupts may have a different mode. In mode 0 the Z-80 will continue
to be interrupted until it finally enables interrupts and acknowledges
the interrupt. In mode 1 the interrupt will be discarded if it is not
acknowledged by the next instruction after it occurred. If mode 1 is used
the software must be designed such that the system will not be executing
certain Z-80 instructions when the interrupt occurs. The opcodes of
these instructions begin with CBH, DDH, EDH, and FDH.

The mode bit for the light pen interrupt is bit 0 of port EH and the mode
bit for screen interrupt is bit 2 of EH.

System Description

 93

SCREEN INTERRUPT

The purpose of the screen interrupt is to synchronize the software
with the video system. The software must send a line number to the
interrupt line register (output port FH). In the low-resolution system
bit 0 is set to 0 and the line number is sent to bits 1-7. In the high-
resolution system the line number is sent to bits 0-7. If the screen
interrupt enable bit is set, the Z-80 will be interrupted when the video
system completes scanning the line in the interrupt register. This
interrupt can be used for timing since each line is scanned 60 times
a second. It can also be used in conjunction with the color registers
to make as many as 256 color-intensity combinations appear on the screen
at the same time.

LIGHT PEN INTERRUPT

The light pen interrupt occurs when the light pen trigger is pressed
and the video scan crosses the point on the screen where the light pen
is. The interrupt routine can read two registers to determine the
position of the light pen. The line number is read from the vertical
feedback register (input port EH). In the high-resolution system the
line number is in bits 0-7. In the low resolution system the line number
is in bits 1-7, bit 0 should be ignored. The horizontal position of the
light pen can be determined by reading input port FH and subtracting 8.
In the low resolution system the resultant value is the pixel number,
0 to 159. In the high-resolution system the resultant must be multiplied
by two to give the pixel number, 0 to 358.

System Description

 94

MAGIC REGISTER

As described earlier, the Magic System is enabled when data is written
to a memory location (X) from 0 to 16K. A modified form of the data is
actually written in memory location X+16K. The magic register (output
port CH) determines how the data is modified. The purpose of each bit
of the magic register is shown below.

 Bit 0 LSB of shift amount
 1 MSB of shift amount
 2 Rotate
 3 Expand
 4 OR
 5 XOR
 6 Flop

The order in which magic functions are performed is as follows:
Expansion is done first; rotating or shifting; flopping; OR or XOR.
As many as four can be used at any one time and any function can be
bypassed. Rotate and shift as well as OR and XOR cannot be done at
the same time.

System Description

 95

EXPAND

The expander is used to expand the 8 bit data bus into 8 pixels (or
16 bits). It expands a 0 on the data bus into a two-bit pixel and a
1 into another two-bit pixel. Thus, two-color patterns can be stored
in ROM in half the normal memory space.

During each memory write instruction using the expander, either the
upper half or the lower half of the data bus is expanded. The half
used is determined by the expand flip-flop. The flip-flop is reset by
an output to the magic register and is toggled after each magic memory
write. The upper half of the data bus is expanded when the flip-flop
is 0, and the lower half when the flip-flop is 1.

The expand register (output port 19H) determines the pixel values
into which the data bus will be expanded. A 0 on the data bus will be
expanded into the pixel defined by bits 0 and 1 of the expand register.
A 1 on the data bus will be expanded into the pixel defined by bits
2 and 3 of the expand register.

The pixels generated by bit 0 or 4 of the data bus will be the least
significant pixel of the expanded byte. The most significant pixel
will come from bit 3 or 7.

System Description

 96

SHIFTER

The shifter, flopper, and rotater operate on pixels rather than bits.
Each byte is thought of as containing four pixels, each of which has
one of four values. The four pixels are referred to as P0, P1, P2,
and P3. P0 is composed of the first two bits of the byte.

The shifter shifts data 0, 1, 2, or 3 pixels to the right. The shift
amount is determined by bits 0 and 1 of the magic register. The pixels
that are shifted out of one byte are shifted into the next byte. Zero's
are shifted into the first byte of a sequence. The shifter assumes the
first byte of a sequence is the first magic memory write after an output
to the magic register. Each sequence must be initialized by an output
to the magic register and data cannot be sent to the magic register in
the middle of a sequence.

FLOPPER

The output of the flopper is a mirror image of it's input. Pixel 0
and 3 exchange values as do pixel 1 and 2.

The diagrams on the following page show examples of shifting
and flopping.

System Description

 97

SHIFTER - FLOPPER

System Description

 98

ROTATOR

The rotater is used to rotate a 4 X 4 pixel image 90 degrees in a clock-
wise direction. The rotator is initialized by an output to the magic
register and will re-initialize itself after every eight writes to
magic memory. To perform a rotation, the following procedure must be
performed twice. Write the top byte of the unrotated image to a location
in magic memory. Write the next byte to the first location plus 80, the
next byte to the first location plus 160, and the last byte to the first
location plus 240. After eight writes the data will appear in RAM and
on the screen rotated 90 degrees from the original image.

The rotator can only be used in commercial mode.

The diagram on the following page shows an example of rotating.

System Description

 99

ROTATOR

System Description

 100

OR AND XOR

These functions operate on a byte as 8-bits rather than four pixels.
When the OR function is used in writing data to RAM, the input to the
OR circuit is ORed with the contents of the RAM location being accessed.
The resultant is then written in RAM.

The XOR function operates in the same way except that the data is
XORed instead of ORed.

INTERCEPT

Software reads the intercept register (input port 8H) to determine if
an intercept occurred on an OR or XOR write. An intercept is defined as the
writing of a non-zero pixel in a pixel location that previously contained
a non-zero pixel. A non-zero pixel is a pixel with a value of 01, 10, or 11.
A 1 in the intercept register means an intercept has occurred. Bits 0 - 3
give the intercept information for all OR or XOR writes since the last
input from the intercept register. An input from the intercept register
resets these bits. A bit is set to 1 if an intercept occurs in the
appropriate position and will not be reset until after the next intercept
register input.

 Bit
 0 Intercept in pixel 3 in an OR or XOR write since last reset
 1 Intercept in pixel 2 in an OR or XOR write since last reset
 2 Intercept in pixel 1 in an OR or XOR write since last reset
 3 Intercept in pixel 0 in an OR or XOR write since last reset
 4 Intercept in pixel 3 in last OR or XOR write
 5 Intercept in pixel 2 in last OR or XOR write
 6 Intercept in pixel 1 in last OR or XOR write
 7 Intercept in pixel 0 in last OR or XOR write

System Description

 101

PLAYER INPUT

The system will accommodate up to four player control handles at once.
Each handle has five switches and a potentiometer. The switches are
read by the Z-80 on input ports 10H - 13H and are not debounced.
The switches are normally open and normally feedback 0's.

The signals from the potentiometers are changed to digital information
by an 8-bit Analog-to-Digital Converter. The four pots are on input ports
1CH - 1FH. All 0's are fedback when the pot is turned fully counter-
clockwise and all 1's when turned fully clockwise.

The 24-button keypad is read on bits 0-5 of ports 14H-17H. The data
is normally 0 and if more than one button is depressed, the data should
be ignored. The keypad will not send back the proper data if any of
the player control switches are closed. Here again, the buttons are
not debounced.

Player control inputs are shown on the following page.

System Description

 102

PLAYER INPUT

System Description

 103

MASTER OSCILLATOR

The frequency of the master oscillator is determined by the contents
of several output ports. Port 10H sets the master frequency. It is
given by the following formula:

 1789
 F_m = ------------ Khz
 PORT 10H + 1

If bit 4 of output port 15H is set to 1, the master oscillator
frequency will be modulated by noise. The amount of modulation will be
set by the 8-bit noise volume register, output port 17H.

If bit 4 of output port 15H is set to 0, the frequency of the master
oscillator will be modulated by a constant value to give a vibrato
effect. The amount of modulation will be set by the vibrato depth
register (the first 6 bits of output port 14H). The speed of the modulation
is set by the vibrato speed register (upper 2 bits of output port 14H);
00 for fastest and 11 for slowest.

Frequency modulation is accomplished by adding a modulation value to the
contents of port 10H and sending the result to the master oscillator
frequency generator. In noise modulation, the modulation value is an
8-bit word from the noise generator. If a bit in the noise volume
register is set to 0, the corresponding bit in the modulation value
word will be set to 0. In vibrato modulation, the modulation value
alternates between 0 and the contents of the vibrato volume register.

Modulation can be completely disabled by setting the master volume to 0
if noise modulation is being used, or by setting the vibrato depth
to 0 when vibrato is used.

System Description

 104

TONES

The system contains three tone generators each clocked by the same
master oscillator. The frequency of Tone A is set by output port 11H,
Tone B by output port 12H, and Tone C by output port 13H. The
frequency is given by the following formula:

 F_m 894
F_. = ----------------------------- = ----------------------------------- Khz
 2(contents of TONE PORT + 1) (PORT 10H+1) (contents of TONE PORT+1)

Proofing Note: 'F_.' = 'F Subscript Up-Arrow'

The tone volumes are controlled by the output ports 15H and 16H. The
lower 4 bits of port 16H set Tone A Volume, the upper 4 bits set Tone
B Volume. The lower 4 bits of port 15H set Tone C Volume. Noise can
be mixed with the tones by setting bit 5 of port 15H to 1. In this case
the noise volume is given by the upper 4 bits of port 17H. In all
cases a volume of 0 is silence and a volume of all 1's is loudest.

SOUND BLOCK TRANSFER

All 8 bytes of sound control can be sent to the audio circuit with
one OTIR instruction. Register C should be sent to 18H, register
B to 8H, and HL pointing to the 8 bytes of data. The data pointed to
by HL goes to port 17H and the next 7 bytes of data goes to ports 16H
through 10H.

 HL -> Memory Location X Data-to-port 17H
 X+1 Data-to-port 16H
 X+2 Data-to-port 15H
 X+3 Data-to-port 14H
 X+4 Data-to-port 13H
 X+5 Data-to-port 12H
 X+6 Data-to-port 11H
 X+7 Data-to-port 10H

System Description

 105

AUDIO GENERATOR BLOCK DIAGRAM

System Description

 106

OUTPUT PORTS

PORT NUMBER FUNCTION
----------- --------
 0H Color Register 0
 1H Color Register 1
 2H Color Register 2
 3H Color Register 3
 4H Color Register 4
 5H Color Register 5
 6H Color Register 6
 7H Color Register 7
 8H Low/High Resolution
 9H Horizontal Color Boundary, Background Color
 AH Vertical Blank Register
 BH Color Block Transfer
 CH Magic Register
 DH Interrupt Feedback Register
 EH Interrupt Enable and Mode
 FH Interrupt Line
 10H Master Oscillator
 11H Tone A Frequency
 12H Tone B Frequency
 13H Tone C Frequency
 14H Vibrato Register
 15H Tone C Volume, Noise Modulation Control
 16H Tone A Volume, Tone B Volume
 17H Noise Volume Register
 18H Sound Block Transfer
 19H Expand Register

System Description

 107

INPUT PORTS

PORT NUMBER FUNCTION
----------- --------
 8H Intercept Feedback
 EH Vertical Line Feedback
 FH Horizontal Address Feedback
 10H Player 1 Handle
 11H Player 2 Handle
 12H Player 3 Handle
 13H Player 4 Handle
 14H Keypad Column 0 (right)
 15H Keypad Column 1
 16H Keypad Column 2
 17H Keypad Column 3 (left)

System Description

 108

SYSTEM BLOCK DIAGRAM

System Description

 109

MICROCYCLER

The purpose of the microcycler is to combine the 16-bit Address Bus
and the 8-bit Data Bus from the Z-80 into one 8-bit Microcycle Data Bus
to the Data Chip, Address Chip, and I/O Chip. This was done to reduce
the pin count on the custom chips.

The Microcycle Data Bus can be in any of four modes. Its mode is
controlled by MC0 and MC1 coming from the Data Chip and RFSH# from the
Z-80. The modes are shown below.

RFSH# MC0 MC1 Microcycle Data Bus Contents
----- --- --- ----------------------------

 0 0 0 A0 - A7 from Z-80
 0 0 1 A0 - A7 from Z-80
 0 1 0 A0 - A7 from Z-80
 0 1 1 A0 - A7 from Z-80
 1 0 0 A0 - A7 from Z-80
 1 0 1 A8 - A15 from Z-80
 1 1 0 D0 - D7 from Z-80
 1 1 1 D0 - D7 to Z-80

MC0 and MC1 change 140 usec after the rising edge of Phi. Their
changes are shown in the timing diagrams of various instruction cycles.

System Description

 110

MICROCYCLER BLOCK DIAGRAM

System Description

 111

ADDRESS CHIP DESCRIPTION

The Microcycle Decoder generates twelve bits of Z-80 address from the
8-bit Microcycle Data Bus. This address is then fed through MUX I and
MUX II to MA0-5 which go to the RAM. The Scan Address Generator
generates a 12-bit address which is used to read video data from the
RAM. This address goes from 0 to FFFH once every frame (1/60 sec.).

MUX I sends either the Scan Address or Z-80 Address to its 12 outputs.
An output of the Scan Address Generator controls MUX I. If the Scan
Address Generator and the Z-80 request memory cycle at the same time,
the Scan Address Generator will have higher priority and the Z-80 will
be required to wait (by the WAIT# output). The Scan Address Generator
never requires the memory for more than one consecutive memory cycle,
so the Z-80 is never required to wait for the memory for more than one
cycle. HORIZ DR and VERT DR synchronize the Scan Address Generator
with the Data Chip and the TV Scan.

The purpose of MUX II is to multiplex its 12 inputs to the six address
bits in the two time slices required for 4K x 1 16 pin RAMS.

The Memory Cycle Generator controls memory cycles generated by either the Z-80
or Scan Address Generator. MREQ#, RD#, M1#, RFSH#, and A12-A15 are from the
Z-80. A12-A15 are fed directly from the Z-80 because if they were brought
out of the microcycle decoder, they would arrive too late in the memory
cycle. The RAS0 - RAS3 outputs are used to activate memory cycles. In the
consumer game, only RAS0 is used to one bank of RAM (4K x 8). In the commercial
game, all four RAS's are used to control four banks of RAM (16K x 8). WRCTL and
LTCHD0 are control signals to the Data Chip. WRCTL tells the Data Chip when to
place data to be written to memory on the memory data bus. LTCHD0 tells
the Data Chip when valid data from RAM is present on the memory data bus.

System Description

 112

As mentioned earlier, WAIT# is generated when the Z-80 and Scan Address
Generator both request memory at the same time. WAIT# is also generated
for one cycle every time the Z-80 requests a memory access, even if there
is no conflict with the Scan Address. This is because the microcycler
slows down Z-80 memory accesses. The Z-80 address bus and data bus must
time share the microcycle bus so the Z-80 data reaches the microcycle bus
very late in the memory cycle.

The INT Generator generates two types of interrupts to the Z-80; Light
Pen and Screen interrupts. A screen interrupt is generated when screen
interrupts are enabled and the TV scan completes a certain line on the
screen (from 0 to 255). The line at which the interrupt will occur is
determined by the Z-80. This interrupt can be used for timing since the
TV rescans every line once every 1/60th sec. A light pen interrupt occurs
when the light pen interrupt is enabled and LIGHT PEN# goes low. The
current scan address is saved in latches in the Scan Address Generator.
The Z-80 can read the contents of these latches to determine the scan
address at the time LIGHT PEN# was activated and thus the position of the
light pen on the screen.

The I/O Decode circuit is used during Z-80 input and output instructions.
Z-80 input instructions are used to read the scan address after light pen
interrupts. Output instructions are used to enable the two interrupts and
set the line number for screen interrupts.

System Description

 113

ADDRESS CHIP BLOCK DIAGRAM

System Description

 114

DATA CHIP DESCRIPTION

The TV Sync Generator uses 7M and 7M# (7.159090 Mhz square waves) to
generate NTSC standard sync and blank to be sent to the Video Generator.
It also generates HORIZ DR and VERT DR for synchronization with the
Address Chip. HORIZ DR occurs once every horizontal line (63.5 usec),
and VERT DR occurs once every frame (16.6 msec).

The Shift Register loads parallel data from the memory data bus (MD0 - MD7)
and shifts it out of its two serial outputs. The TV Sync Generator controls
when data is loaded or shifted. In a consumer game, the two outputs of
the shift register are sent through MUX I to MUX II. In a commercial
game, SERIAL 0 and SERIAL 1 are sent through MUX I and MUX II. The
two bits from MUX I select 8 bits to be sent through MUX II to the Video
Generator. These 8 bits then determine the analog voices of VIDEO, R-Y,
and B-Y. 2.5V is a 2.5V D C reference level.

The Clock Generator generates 0G and PX# from 7M. These are the clocks
for the rest of the system. The Frequency of PX# is half that of 7M
and the frequency of 0G is half that of PX#.

The Microcycle Generator generates the microcycle control bits, MC0 and
MC1 from IORQ#, MREQ#, RD#, and M1#, all from the Z-80.

In memory write cycles WRCTL is activated and the Memory Control circuit
generates DATEN#. The Magic Function Generator takes the data from the
Z-80 on MUXD0 - D7 and transfers it to MD0 - MD7. If a Magic write is
being done, the Magic Function Generator will modify the data as required
before it places it on the memory data bus.

System Description

 115

A Magic write is a memory write cycle in which data is written to a
location, (X) from 0 to 16K. All memory from 0 to 16K is ROM and cannot
be modified. The data is modified by the Magic Function Generator and
is written to location X + 16K. The way in which the data is modified is
determined by the 7 bits coming from the I/O registers.

In memory reads, data is transferred from MD0 - MD7 to MUXD0 - MUXD7.
Also, LTCHD0 is activated which causes the data from RAM to be latched
up in a register in the Magic Function Generator. This latched data
is used in some magic functions.

The I/O registers are loaded by output instructions from the Z-80 just
as in the Address Chip.

System Description

 116

DATA CHIP BLOCK DIAGRAM

System Description

 117

I/O CHIP DESCRIPTION

The Z-80 communicates with the I/O Chip through input and output
instructions. The state of an 8 x 8 switch matrix can be read through
the Switch Scan circuit. When an input instruction is executed, one
of the SO0-SO7 lines will be activated. When a line is activated, the
switch matrix will feed back eight bits of data on SI0-SI7. This data
is in turn fed to the Z-80 through MUXD0 - MUXD7.

The Z-80 can read the position of four potentiometers (pots) through the
A-D Converter circuit. The pots are continuously scanned by the A-D
Converter and the results of the conversions are stored in a RAM in the
A-D Converter circuit. The Z-80 simply reads this RAM with input
instructions.

The Z-80 loads data into the Music Processor with output instructions.
This data determines the characteristics of the audio that is generated.
The Music Processor is described in detail below.

System Description

 118

I/O CHIP BLOCK DIAGRAM

System Description

 119

MUSIC PROCESSOR

The music processor can be divided into two sections. The first section
generates the Master Oscillator Frequency and the second section uses the
Master Oscillator Frequency to generate tone frequencies and the analog
audio output. The contents of all registers in the Music Processor are
set by output instructions from the Z-80.

Master Oscillator Frequency is a square wave whose frequency is determined
by the 8 binary inputs to the Master Oscillator. This 8-bit word is the
sum of the contents of the Master Oscillator Register and the output
of the MUX. The MUX is controlled by MUX REG.

If MUX REG contains 0, then data from the Vibrato System will be fed
through the MUX. The two bits from the Vibrato Frequency Register
determine the frequency of the square wave output of the Low Frequency
Oscillator. The 6-bit word at the output of the AND gates oscillates
between 0 and the contents of the Vibrato Register. The frequency of
oscillation is determined by the contents of the Vibrato Frequency
Register. The 6-bit word, along with two ground bits are fed through
the MUX to the Adder. This causes the Master Oscillator Frequency to be
modulated between two values thus giving a Vibrato effect.

If MUX REG contains 1, then data from the Noise System will be fed
through the MUX. The 8-bit word from the Noise Volume Register
determines which bits from the Noise Generator will be present at the
output of the AND gates.

System Description

 120

If a bit in the Noise Volume Register is 0, then the corresponding
bit at the output of the AND gates will be 0. If a bit in the Noise
Volume Register is 1, then the corresponding bit at the output of the
AND gates will be noise from the Noise Generator. This 8-bit word is
sent through the MUX to the Adder. The Master Oscillator Frequency is
modulated by noise.

In the second part of the Music Processor, the square wave from the
Master Oscillator is fed to three Tone Generator circuits which produce
square waves at their outputs. The frequency of their outputs is
determined by the contents of their Tone Generator Register and Master
Oscillator Frequency. The 4-bit words at the output of the AND gates
oscillate between 0 and the contents of the Tone Volume Register. These
4-bit words are sent to D-A Converters whose outputs oscillate between
GND and a positive analog voltage determined by the contents of the Tone
Volume Register.

One Noise bit and four Noise Volume bits from the first section of the
Music Processor are fed to a set of AND gates. This set of AND gates
operates the same way as the AND gates for the tones, except that the
Noise AM Register must contain a 1 for the outputs of the AND gates to
oscillate. The analog outputs of the four D-A Converters are summed to
produce the single audio output.

System Description

 121

MASTER OSCILLATOR BLOCK DIAGRAM

System Description

 122

TONE GENERATORS

System Description

 123

CUSTOM CHIP TIMING

The following diagrams show the relationship of various signals
in the system during different types of operations. Delays are
shown to be zero nsec from the clock edge which cause the transition.
The actual delay is given in "Electrical Specifications for Midway
Custom Circuits."

MUXD0 - MUXD7 is an 8-bit bidirectional address and data bus for
the custom chips. By using this technique, 16 bits of address and
8 bits of data can be sent to the custom chips on 8 wires. The
state of the bus is determined by MC0 and MC1 from the data chip
and RFSH# from the Z-80.

RFSH# MC1 MC0
----- --- ---

 L L L A0 - A7 to custom chips

 L L H A0 - A7 to custom chips

 L H L A0 - A7 to custom chips

 L H H A0 - A7 to custom chips

 H L L A0 - A7 to custom chips

 H L H A8 - A15 to custom chips

 H H L D0 - D7 to custom chips

 H H H D0 - D7 from custom chips

System Description

 124

MEMORY WRITE WITHOUT EXTRA WAIT STATE

System Description

 125

MEMORY WRITE WITH VIDEO WAIT STATE

System Description

 126

MEMORY READ WITHOUT EXTRA WAIT STATE

System Description

 127

MEMORY READ WITH VIDEO WAIT STATE

System Description

 128

I/O READ FROM PORT 10H - 17H

System Description

 129

I/O READ FROM OTHER THAN PORT 10H - 17H

System Description

 130

I/O WRITE

System Description

 131

VIDEO TIMING

The frequency of PX# is half that of 7M and the 0 is one-fourth 7M.
There are 455 cycles of 7M per horizontal line and 133 3/4 Phi cycles
per line. Because of the extra 3/4 cycle, 0 must be resynchronized
at the beginning of each line. This is done by stalling 0 for
3 cycles of 7M. PX# is also stalled for the same amount of time.
The timing relationship is shown below. The diagram also shows
the relationship of VERT DR to HORIZ DR. The two RAS pulses shown
are the first two video RAS signals of a line, each line contains
forty.

System Description

 132

RELATIONSHIP BETWEEN 7M, HORIZ DR, VERT DR, PHI G, PX AND RAS

System Description

 133

RELATIONSHIP BETWEEN HORIZ DR, HORIZ BLANK, HORIZ SYNC AND COLOR BURST
--

System Description

 134

RELATIONSHIP BETWEEN VERTICAL SYNC, VERTICAL BLANK AND VERTICAL DRIVE

System Description - Electrical Specification For Midway Custom Circuits

 135

 - 1 -

ELECTRICAL SPECIFICATION FOR MIDWAY CUSTOM CIRCUITS

I. GENERAL SYSTEM PARAMETERS | REVISIONS:
 | ---------
 I. A. Power Supplies | 1/14/77 N/C
 -------------- | 1/27/77 A 135
 | 3/25/77 B
 1. VDD=+5.0V +/- 5% | 7/6/77 C
 2. VGG=+10.0V +/- 5%
 3. VSS=0.0V

 I. B. Timing Signals

 1. 0 & 0#; Period = 560nsec, High time^* 240nsec to 260nsec.
 0 & 0# have zero level crossover +1 volt -0 volts.
 t_r, t_f^* less than 20nsec

 2. 7M & 7M#; Period = 140nsec, High time^+ 50nsec to 70nsec
 7M & 7M# have zero level crossover +1 volt -0 volt
 t_r, t_f^+ less than 15nsec

 Dead time <= 5nsec
 Max C Load = 20pf

 +Note
 1) High time is time clock at >=.6V.
 2) Rise time from zero level to one level.

System Description - Electrical Specification For Midway Custom Circuits

 136

 - 2 -

 I. B. (Continued)

 *Note:

 1. High time is time between 50% points.

 2. Clock signals are generated by low power Shottky Logic
 (series 74LS). Full level swing on clock signals to be
 achieved through external resistor to V_DD. Zero level
 .7V to 0V.
 3. Rise time from zero level to .9V_DD.

 I. C. Z80 Data Bus (MUXD0-MUXD7)

 1. Z80 Data Bus interface requires a three-state output/input
 buffer. The three states are defined below.

 2. Logic 0: .5V + noise generated by chip, noise for address
 chip is .15V @ -430uA

 3. Logic 1: 2.7V @ +70uA

 4. High Impedance: Leakage at either logic 0 or 1 to be
 less than 5uA.

 5. Transient Response: Transition from High Impedance to
 0 or 1 will be complete within 442nsec
 of the 90% point of 0# of the last wait
 state of input cycle or 442nsec of the
 90% point of the 0 of the second wait state
 of the interrupt acknowledge cycle.
 The maximum load will be 80pf. This
 includes 14pfd for two custom chips.

 6. Exception: The path through the Data chip connecting
 the RAM bus with the Z80 bus shall introduce
 a maximum of 160nsec of delay.

 7. The low address byte will be valid on the Z80 Data Bus
 at least 62nsec before 0#. The high address byte will
 be valid at least 79nsec before 0#. The data byte will be
 valid 55nsec before 0#.

System Description - Electrical Specification For Midway Custom Circuits

 137

 - 3 -

 I. D. RAM Data Bus (MD0-MD7) - Home Game

 1. The RAM Data Bus will require three state logic buffers.

 2. Logic 0: .5V @ -25uA

 3. Logic 1: 2.7V @ +25uA

 4. High Impedance: 5uA maximum leakage at either logic 0 or 1.

 5. Transient Response: The outputs shall transition from High
 Impedance to 0 or 1 within 120nsec of 7M.
 The outputs shall transition from 1 or 0
 to high impedance within 20nsec of 7M.
 Maximum load will be 20pf.

 I. E. RAM Data Bus (MD0-MD7) - Commercial Game

 1. The RAM Data Bus will require three state logic buffers.

 2. Logic 0: .5V @ -200uA

 3. Logic 1: 2.7V @ +25uA

 4. High Impedance: 5uA maximum leakage at either logic 0 or 1.

 5. Transient Response: The outputs shall transition from High
 Impedance to 0 or 1 within 120nsec of
 7M. The output shall transition from
 1 or 0 to High Impedance within 2nsec
 of 7M. Maximum load will be 10pf.

 I. F. Ambient operating temperature >= 0'C, <= 55'C

 I. G. Storage temperature >= -65'C, <= 150'C.

 I. H. Packing 40 pin plastic.

II. CUSTOM CIRCUIT SPECIFICATION

 This specification defines the terminal characteristics for
 each of the custom circuits. These specifications shall take
 precedence in case of conflict. All 0 references refer to
 the 0 and 0# inputs to the address and I/O chip.

System Description - Electrical Specification For Midway Custom Circuits

 138

 - 4 -

II. A. Data Chip

 1. Input Pin List V0 V1 t_d (Low)^1 t_d (High)^1 Ref.
 -- -- ----------- ----------- ----
 (V) (V) (nsec) (nsec)

 MREQ# .5 2.45 132 6 7M
 RD# .5 2.45 12 6 7M
 IORQ# .5 2.45 112 126 7M
 7M See Section I.B.
 7M# See Section I.B.
 WRCTL# .5 3.1 82 82 7M
 M1# .5 2.45 12 82 7M
 LTCHDO .5 3.1 120 120 7M
 Serial 0 .5 2.45 30 30 7M
 Serial 1 .5 2.45 30 30 7M

 2. Power Supplies

 See Section I. A.

 3. Bus Connections

 MXD0 See Z80 Data Bus Spec. Section I.C.
 MXD1 " "
 MXD2 " "
 MXD3 " "
 MXD4 " "
 MXD5 " "
 MXD6 " "
 MXD7 " "
 MD0 See RAM Data Bus Spec Section I.D.
 MD1 " "
 MD2 " "
 MD3 " "
 MD4 " "
 MD5 " "
 MD6 " "
 MD7 " "

System Description - Electrical Specification For Midway Custom Circuits

 139

 - 5 -

 4. Outputs V0 I0 V1 I1 CAP t_p Ref.
 -- -- -- -- --- ---- ----
 (V) (uA) (V) (uA) (pf) (nsec)

 VIDEO* * 10 100 7M
 R-Y* * 10 600
 B-Y* * 10 600
 HORIZ DR Note 4 400 2.7 20 20 20 7M
 VERT DR Note 4 400 2.7 20 20 20 7M
 2.5V^6 -- -- -- -- -- DC
 0 Note 4 400 2.7 20 10 100 7M
 PXCLK# Note 4 400 2.7 20 10 100 7M
 MC0 Note 4 400 2.7 20 10 120 7M
 MC1 Note 4 400 2.7 20 10 120 7M
 DATEN# Note 4 400 2.7 20 10 90 7M

 *Video, R-Y, B-Y are analog outputs at 140nsec rate. Video,
 must switch from 10% to 90% of black to white in 140nsec.
 R-Y and B-Y transitions not to exceed .6usec.

 1 t_d (Low) and t_d (High) is maximum time in nsec except where a
 minimum is shown.
 2 For IORQ# Ref. to 0# t_d (Low)=132nsec t_d (High)=6nsec.
 3 Serial 0 and Serial 1 will operate at 7MHz
 4 .5 + noise generated by chip.
 5. Tap on both resistor chains for a capacitor. Will become test
 input with voltage applied > 8V.
 6 The Z80 0 is generated by this signal with a clock driver which
 introduces a delay of <20nsec.

System Description - Electrical Specification For Midway Custom Circuits

 140

 - 6 -
II. B. I/O Chip

 1. Input Pin List V0 V1 Ref t_d (High) t_d (Low)
 -- -- --- --------- ---------
 (nsec) (nsec)

 Reset .5 2.45
 MONOS Note 1
 RD# .5 2.45 0 or 0# 166 172 0 or 0#
 IORQ# .5 2.45 0^6 146 0# 132 0
 0 See Section I.B.
 0# See Section I.B.
 SI0 .5 3.3 Note 3
 SI1 .5 3.3 Note 3
 SI2 .5 3.3 Note 3
 SI3 .5 3.3 Note 3
 SI4 .5 3.3 Note 3
 SI5 .5 3.3 Note 3
 SI6 .5 3.3 Note 3
 SI7 .5 3.3 Note 3
 TEST .5 5.0 DC

 2. Power Supplies

 See Section I.A.

 3. Bus Connections

 MUXD0 See Z80 Data Bus Spec Section I.C.
 MUXD1 " "
 MUXD2 " "
 MUXD3 " "
 MUXD4 " "
 MUXD5 " "
 MUXD6 " "
 MUXD7 " "

 4. Outputs V0 I0 V1 I1
 -- -- -- --
 (V) (uA) (V) (uA)

 Audio Note 4 Fmax - 20KHz
 Discharge Note 5 .5V 4V
 SO0 Note 3 Note 7 200 4V 1650
 SO1 Note 3 Note 7 200 4V 1650
 SO2 Note 3 Note 7 200 4V 1650
 SO3 Note 3 Note 7 200 4V 1650
 SO4 Note 3 Note 7 200 4V 1650
 SO5 Note 3 Note 7 200 4V 1650
 SO6 Note 3 Note 7 200 4V 1650
 SO7 Note 3 Note 7 200 4V 1650

 POT 0 Note 2 5 V_DD-.5 50
 POT 1 Note 2 5 V_DD-.5 50
 POT 2 Note 2 5 V_DD-.5 50
 POT 3 Note 2 5 V_DD-.5 50

System Description - Electrical Specification For Midway Custom Circuits

 141

 - 7 -
 Note 1 MONOS triggers at 2.1 volts +/- 2% +/- noise voltage
 when the supply is 5.25V.

 Note 2 Open source-Voltage measured with 0.2ma.

 Note 3 Time from load of address into microcycle register
 to date valid on MUX data bus from SI inputs
 (data path through address decoder, out on SO
 outputs, through closed switch and isolation diode,
 into SI input to MUX Data Bus) shall be 2usec max.
 Drop of isolation diode will be 0.7V max. SO must
 drive 2kohm in the high level. Max C load of SO
 shall be 300 pf. SI input shall kill device
 enabled by INPUT#.

 Note 4 Audio voltage oscillates between 0V and one of the
 following voltages; .33, .67, 1.00, 1.33, 1.67, 2.00,
 2.33, 2.67, 3.00, 3.33, 3.67, 4.00, 4.33, 4.67, and
 5.00. These voltages should be +/- 6%. The load shall
 be 1000pf and 100kohm.
 Note 5 Discharge is open drain to V_SS. Discharges .01ufd
 capacitor to .2V in 144usec.
 Note 6 For IOREQ# Ref. to 0# t_d (Low)=152nsec t_d(High)=166nsec.

 Note 7 .5V + noise generated by I/O chip.

Miscellaneous Timing

 Time for MO Adder - 20 max

System Description - Electrical Specification For Midway Custom Circuits

 142

 - 8 -
II. C. Address Chip

 1. Input Pin List V0 V1 t_pd (Low) t_pd (High) REF
 -- -- ---------- ---------- ---
 (V) (V) (nsec) (nsec)

 RFSH# .5 2.45 222 0 216 0
 MREQ# .5 2.45 152 0# 166 0 or 0#
 RD# .5 2.45 172 0 or 0# 166 0 or 0#
 MI# .5 2.45 176 0 242 0
 A12^1 .5 2.45 0
 A13^1 .5 2.45 0
 A14^1 .5 2.45 0
 A15^1 .5 2.45 0
 IORQ# .5 2.45 132 0 146 0#^2
 LIGHT PEN# .5 2.45 Asyn
 TEST# .5 5.0 DC
 HORIZ. DR. .5 2.45 Note 3 0#
 VERT. DR. .5 2.45 Note 4 0
 0 See Section I.B.
 0# See Section I.B.

 2. Power Supplies

 See Section I.A.

 3. Bus Connections
 MXD0 See Z80 Data Bus Spec Section I.E.
 MXD1 " "
 MXD2 " "
 MXD3 " "
 MXD4 " "
 MXD5 " "
 MXD6 " "
 MXD7 " "

 4. Output V0 I0 V1 I1 CAP T_pd(Low) T_pd(High)REF
 -- -- -- -- --- --------- --------- ---
 (V) (uA) (V) (uA) (pf) (nsec) (nsec)
 LATCHD0 Note 7 Note 6 3.1 Note 6 10 280 140 0#^
 WAIT# Note 7 400 2.4 20 25 490 490 0#
 MA0-MA5 Note 7 400 2.4 20 20 242 240 0# or 0
 INT# Note 7 400 2.4 20 25 490 572 0
 RAS0-RAS3Note 7 400 2.4 20 20 382 382 0#
 WRCTL# Note 7 Note 6 3.1 Note 6 10 382 382 0#

1. Time from High Impedance to 1 or 0 is 200nsec. (from 0_1 of T_1)
2. For IORQ# Ref to 0# t_d (Low)=152nsec t_d (High)=166nsec. 0
3. Horizontal Drive time from low to high is 40nsec after 0#.
 Time from high to low is 100nsec before rising edge of 0.
4. Vertical Drive will transition from low to high 40nsec after falling edge
 of 0. Its width will be 2.1 usec max, 1.54usec min. It will go from
 high to low 100nsec before falling edge of 0.
5. Reference t_pd (High) is 0.
6. MOS to MOS signal.
7. .5V + noise generated by Address Chip (.15V) = .65V

System Description - Electrical Specification For Midway Custom Circuits

 143

 - 9 -

III. I/O MODE DECODE

 I/O Parts

 HEX OUT INPUT
 --- --- -----

 0 Color 0 Right
 1 Color 1 Right
 2 Color 2 Right
 3 Color 3 Right
 4 Color 0 Left
 5 Color 1 Left
 6 Color 2 Left
 7 Color 3 Left
 8 Consumer/Commercial Intercept Feedback
 9 Horiz Color Bndry
 A Vertical Blank
 B Color Block TX
 C Magic Reg
 D Interrupt Feedback
 E Interrupt Mode Vertical Addr Feedback
 F Interrupt Line Horizontal Addr Feedback
 10 Tone Master OSC SW Bank 0
 11 Tone A SW Bank 1
 12 Tone B SW Bank 2
 13 Tone C SW BANK 3
 14 Tremolo SW BANK 4
 15 Tone C Volume SW BANK 5
 16 Tone A,B Volume SW BANK 6
 17 Noise Volume SW BANK 7
 18 Sound Block TX
 19
 1A
 1B
 1C Pot 0
 1D Pot 1
 1E Pot 2
 1F Pot 3
 20
 21
 22
 23
 24
 .
 .
 2F

End of 'Nutting' Manual - Continues with ROM Source

System Description - Electrical Specification For Midway Custom Circuits

 144

 This page intentionally left blank for double-sided print purposes

 Bally.h - Header File and Symbolic Table References

 1

Feb 08 16:23 2002 bally.h Page 1

 1: ; BALLY.H - Version 2.2
 2: ; Bally Astrocade Equates and Macros Header File
 3: ;
 4: ; Retyped and proofread by Adam Trionfo and Lance F. Squire
 5: ; Version 1.0 - January 17, 2002
 6: ; Version 2.2 - February 6, 2002
 7: ; This ROM file contains the equates and macros that the
 8: ; Bally ROM requires for assembly (the header file is
 9: ; available separately too). This file has been written to
 10: ; assemble with ZMAC 1.3 (a little known, freely distribut-
 11: ; able Z-80 assembler (with C source), that has a 25-year
 12: ; history. ZMAC can be compiled under just about any O.S.
 13: ; in existence, so try it out. This file will probably
 14: ; require changes to be assembled under other assemblers.
 15: ;
 16: ; To assemble your Z-80 source code using ZMAC:
 17: ;
 18: ; zmac -d -o <outfile> -x <listfile> <filename>
 19: ;
 20: ; For example, assemble this Astrocade Z-80 ROM file:
 21: ;
 22: ; zmac -d -o BallyROM.bin -x BallyROM.lst BallyROM.asm
 23: ;
 24: ; Currently the Listing file is full of 'Undeclared'
 25: ; errors. When all of the source is typed-in, these will
 26: ; vanish. I'm leaving the others until all the source is
 27: ; re-typed.
 28: ;

Bally.h - Header File , Symbolic Table References

 2

Feb 08 16:23 2002 bally.h Page 2

 30: ; ***************************
 31: ; * HOME VIDEO GAME EQUATES *
 32: ; ***************************
 33: ;
 34: ; ASSEMBLY CONTROL
 35: ;
 36: 0001 XPNDON EQU 1 ; ** SET TO 1 WHEN HARDWARE EXP
 37: 0001 NWHDWR EQU 1 ; ** SET TO 1 WHEN NEW HARDWARE
 38: ;
 39: ; GENERAL GOODIES
 40: 4000 NORMEM EQU 4000H
 41: 2000 FIRSTC EQU 2000H ; FIRST ADDRESS IN CARTRIDGE
 42: 0000 SCREEN EQU 0
 43: 0028 BYTEPL EQU 40 ; BYTES PER LINE
 44: 00A0 BITSPL EQU 160 ; BITS PER LINE
 45: ; STUFF IN SYSTEM DOPE VECTOR
 46: 0200 STIMER EQU 200H ; SECONDS AND GAME TIME,MUSIC
 47: 0203 CTIMER EQU 203H ; CUSTOM TIMERS
 48: 0206 FNTSYS EQU 206H ; SYSTEM FONT DESCRIPTOR
 49: 020D FNTSML EQU 20DH ; SMALL FONT DESCRIPTOR
 50: 0214 ALKEYS EQU 214H ; KEYMASK OF ALL KEYS
 51: 0218 MENUST EQU 218H ; HEAD OF ONBOARD MENU
 52: 021E MXSCR EQU 21EH ; ADDRESS OF 'MAX SCORE'
 53: 0228 NOPLAY EQU 228H ; ADDRESS OF '# OF PLAYERS'
 54: 0235 NOGAME EQU 235H ; ADDRESS OF '# OF GAMES'
 55: ; BITS IN PROCESSOR FLAG BYTE
 56: 0007 PSWSGN EQU 7 ; SIGN BIT
 57: 0006 PSWZRO EQU 6 ; ZERO BIT
 58: 0002 PSWPV EQU 2 ; PARITY OVERFLOW
 59: 0000 PSWCY EQU 0 ; CARRY
 60: ; BITS IN GAME STATUS BYTE
 61: 0000 GSBTIM EQU 0
 62: 0001 GSBSCR EQU 1
 63: 0007 GSBEND EQU 7
 64: ; STANDARD VECTOR DISPLACEMENTS AND BITS
 65: 0000 VBMR EQU 0 ; MAGIC REGISTER
 66: 0001 VBSTAT EQU 1 ; STATUS
 67: 0002 VBTIMB EQU 2 ; TIME BASE
 68: 0003 VBDXL EQU 3 ; DELTA X LO
 69: 0004 VBDXH EQU 4 ; DELTA X HI
 70: 0005 VBXL EQU 5 ; X COORD LO
 71: 0006 VBXH EQU 6 ; X COORD HI
 72: 0007 VBXCHK EQU 7 ; X CHECK FLAGS
 73: 0008 VBDYL EQU 8 ; DELTA Y LO
 74: 0009 VBDYH EQU 09H ; DELTA Y HI
 75: 000A VBYL EQU 0AH ; Y COORD LO
 76: 000B VBYH EQU 0BH ; Y COORD HI
 77: 000C VBYCHK EQU 0CH ; Y CHECK FLAGS
 78: 000D VBOAL EQU 0DH ; OLD ADDRESS OF L.O.
 79: 000E VBOAH EQU 0EH ; OLD ADDRESS OF H.O.
 80: ; DISPLACEMENTS FROM START OF COORDINATE AREA
 81: 0000 VBDCL EQU 0 ; LO DELTA
 82: 0001 VBDCH EQU 1 ; HI DELTA
 83: 0002 VBCL EQU 2 ; LO COORD
 84: 0003 VBCH EQU 3 ; HI COORD
 85: 0004 VBCCHK EQU 4 ; CHECK BITS

 Bally.h - Header File and Symbolic Table References

 3

Feb 08 16:23 2002 bally.h Page 3

 86: ; BITS IN STATUS BYTE
 87: 0007 VBSACT EQU 7 ; VECTOR ACTIVE STATUS
 88: 0006 VBBLNK EQU 6 ; BLANK STATUS
 89: ; BITS IN CHECK BIT MASK
 90: 0000 VBCLMT EQU 0 ; DO LIMIT CHECKING
 91: 0001 VBCREV EQU 1 ; REVERSE DELTA ON LIMIT ATTAIN
 92: 0003 VBCLAT EQU 3 ; COORDINATE IS AT LIMIT
 93: ; FONT TABLE DISPLACEMENTS FOR NEW CHARACTER DISPLAY ROU
 94: 0000 FTBASE EQU 0 ; BASE CHARACTER
 95: 0001 FTFSX EQU 1 ; X FRAME SIZE
 96: 0002 FTFSY EQU 2 ; Y FRAME SIZE
 97: 0003 FTBYTE EQU 3 ; X SIZE FOR CHAR IN BYTES
 98: 0004 FTYSIZ EQU 4 ; Y SIZE IN BITS
 99: 0005 FTPTL EQU 5 ; PATTERN TABLE ADDRESS LO
 100: 0006 FTPTH EQU 6 ; PATTERN TABLE ADDRESS HI
 101: ; BITS FOR MAGIC REGISTER WRITE OPTION BYTE
 102: 0006 MRFLOP EQU 6 ; WRITE WITH FLOP
 103: 0005 MRXOR EQU 5 ; WRITE WITH EXCLUSIVE OR
 104: 0004 MROR EQU 4 ; WRITE WITH OR
 105: 0003 MRXPND EQU 3 ; WRITE WITH EXPAND
 106: 0002 MRROT EQU 2 ; WRITE WITH ROTATE
 107: 0003 MRSHFT EQU 03H ; MASK OF SHIFT AMOUNT
 108: ; BITS OF CONTROL HANDLE INPUT PORT
 109: 0004 CHTRIG EQU 4 ; TRIGGER
 110: 0003 CHRIGH EQU 3 ; JOYSTICK RIGHT
 111: 0002 CHLEFT EQU 2 ; JOYSTICK LEFT
 112: 0001 CHDOWN EQU 1 ; DOWN
 113: 0000 CHUP EQU 0 ; UP
 114: ; CONTEXT BLOCK REGISTER DISPLACEMENTS
 115: 0000 CBIYL EQU 0 ; IY
 116: 0001 CBIYH EQU 1
 117: 0002 CBIXL EQU 2 ; IX
 118: 0003 CBIXH EQU 3
 119: 0004 CBE EQU 4 ; DE
 120: 0005 CBD EQU 5
 121: 0006 CBC EQU 6 ; BC
 122: 0007 CBB EQU 7
 123: 0008 CBFLAG EQU 8 ; AF
 124: 0009 CBA EQU 9
 125: 000A CBL EQU 0AH ; HL
 126: 000B CBH EQU 0BH
 127: ; SENTRY RETURN CODES EQUATES:
 128: 0000 SNUL EQU 0 ; NOTHING HAPPENED
 129: 0001 SCT0 EQU 1 ; COUNTER-TIMER 1 THRU 8
 130: 0002 SCT1 EQU 2
 131: 0003 SCT2 EQU 3
 132: 0004 SCT3 EQU 4
 133: 0005 SCT4 EQU 5
 134: 0006 SCT5 EQU 6
 135: 0007 SCT6 EQU 7
 136: 0008 SCT7 EQU 8
 137: 0009 SF0 EQU 9 ; FLAG BIT 0
 138: 000A SF1 EQU 0AH
 139: 000B SF2 EQU 0BH
 140: 000C SF3 EQU 0CH
 141: 000D SF4 EQU 0DH

Bally.h - Header File , Symbolic Table References

 4

Feb 08 16:23 2002 bally.h Page 4

 142: 000E SF5 EQU 0EH
 143: 000F SF6 EQU 0FH
 144: 0010 SF7 EQU 10H
 145: 0011 SSEC EQU 11H ; SECONDS TIMER HAS COUNTED DOWN
 146: 0013 SKYD EQU 13H ; KEY IS DOWN
 147: 0012 SKYU EQU 12H ; YES IS UP
 148: 001C SP0 EQU 1CH ; POT IS 0
 149: 001D SP1 EQU 1DH ; POT IS 1
 150: 001E SP2 EQU 1EH ; POT IS 2
 151: 001F SP3 EQU 1FH ; POT IS 3
 152: 0014 ST0 EQU 14H ; TRIGGER 0
 153: 0015 SJ0 EQU 15H ; JOYSTICK 0
 154: 0016 ST1 EQU 16H ; SIMILARLY FOR 1-3
 155: 0017 SJ1 EQU 17H
 156: 0018 ST2 EQU 18H
 157: 0019 SJ2 EQU 19H
 158: 001A ST3 EQU 1AH
 159: 001B SJ3 EQU 1BH

 Bally.h - Header File and Symbolic Table References

 5

Feb 08 16:23 2002 bally.h Page 5

 161: ; ********************************
 162: ; * HOME VIDEO GAME PORT EQUATES *
 163: ; ********************************
 164: ; OUTPUT PORTS FOR VIRTUAL COLOR
 165: 0000 COL0R EQU 0 ; COLOR 0 RIGHT
 166: 0001 COL1R EQU 1 ; COLOR 1 RIGHT
 167: 0002 COL2R EQU 2 ; COLOR 2 RIGHT
 168: 0003 COL3R EQU 3 ; COLOR 3 RIGHT
 169: 0004 COL0L EQU 4 ; COLOR 0 LEFT
 170: 0005 COL1L EQU 5 ; COLOR 1 LEFT
 171: 0006 COL2L EQU 6 ; COLOR 2 LEFT
 172: 0007 COL3L EQU 7 ; COLOR 3 LEFT
 173: 000B COLBX EQU 0BH ; COLOR BLOCK OUTPUT PORT
 174: 0009 HORCB EQU 9 ; HORIZONTAL COLOR BOUNDARY
 175: 000A VERBL EQU 0AH ; VERTICAL BLANKING LINE
 176: ; OUTPUT PORTS FOR MUSIC AND SOUNDS
 177: 0010 TONMO EQU 10H ; TONE MASTER OSCILLATOR
 178: 0011 TONEA EQU 11H ; TONE A OSC.
 179: 0012 TONEB EQU 12H ; TONE B OSC.
 180: 0013 TONEC EQU 13H ; TONE C OSC.
 181: 0014 VIBRA EQU 14H ; VIBRATO
 182: 0016 VOLAB EQU 16H ; TONES A,B VOLUME
 183: 0015 VOLC EQU 15H ; TONE C VOLUME
 184: 0017 VOLN EQU 17H ; NOISE VOLUME
 185: 0018 SNDBX EQU 18H ; SOUND BLOCK OUTPUT PORT
 186: ; INTERRUPT AND CONTROL OUTPUT PORTS
 187: 000D INFBK EQU 0DH ; INTERRUPT FEEDBACK
 188: 000E INMOD EQU 0EH ; INTERRUPT MODE
 189: 000F INLIN EQU 0FH ; INTERRUPT LINE
 190: 0008 CONCM EQU 8 ; CONSUMER COMMERCIAL
 191: 000C MAGIC EQU 0CH ; MAGIC REGISTER
 192: 0019 XPAND EQU 19H ; EXPANDER PIXEL DEFINITION PORT
 193: ; INTERRUPT AND INTERCEPT INPUT PORTS
 194: 0008 INTST EQU 8 ; INTERCEPT STATUS
 195: 000E VERAF EQU 0EH ; VERTICAL ADDRESS FEEDBACK
 196: 000F HORAF EQU 0FH ; HORIZONTAL ADDRESS FEEDBACK
 197: ; HAND CONTROL INPUT PORTS
 198: 0010 SW0 EQU 10H ; PLAYER 0 HAND CONTROL
 199: 0011 SW1 EQU 11H ; PLAYER 1 HAND CONTROL
 200: 0012 SW2 EQU 12H ; PLAYER 2 HAND CONTROL
 201: 0013 SW3 EQU 13H ; PLAYER 3 HAND CONTROL
 202: 001C POT0 EQU 1CH ; PLAYER 0 POT
 203: 001D POT1 EQU 1DH ; PLAYER 1 POT
 204: 001E POT2 EQU 1EH ; PLAYER 2 POT
 205: 001F POT3 EQU 1FH ; PLAYER 3 POT
 206: ; KEYBOARD INPUT PORTS
 207: 0014 KEY0 EQU 14H ; KEYBOARD COLUMN 0
 208: 0015 KEY1 EQU 15H ; KEYBOARD COLUMN 1
 209: 0016 KEY2 EQU 16H ; KEYBOARD COLUMN 2
 210: 0017 KEY3 EQU 17H ; KEYBOARD COLUMN 3

Bally.h - Header File , Symbolic Table References

 6

Feb 08 16:23 2002 bally.h Page 6

 212: ; ***************************************
 213: ; * HOME VIDEO GAME SYSTEM CALL INDEXES *
 214: ; ***************************************
 215: ; USER PROGRAM INTERFACE
 216: 0000 UPISTR EQU 0
 217: 0000 INTPC EQU UPISTR ; INTERPRET WITH CONTEXT CREATE
 218: 0002 XINTC EQU INTPC+2 ; EXIT INTERPRETER WITH CONTEXT
 219: 0004 RCALL EQU XINTC+2 ; CALL ASM LANGUAGE SUBROUTINE
 220: 0006 MCALL EQU RCALL+2 ; CALL INTERPRETER SUBROUTINE
 221: 0008 MRET EQU MCALL+2 ; RETURN FROM INTERPRETER SUBRO
 222: 000A MJUMP EQU MRET+2 ; MACRO JUMP
 223: 000C SUCK EQU MJUMP+2 ; SUCK INLINE ARGS INTO CB
 224: ; SCHEDULER ROUTINES
 225: 000C SCHEDR EQU SUCK
 226: 000E ACTINT EQU SCHEDR+2 ; SET SUB TIMER
 227: 0010 DECCTS EQU ACTINT+2 ; DEC CT'S UNDER MASK
 228: ; MUSIC AND SOUNDS
 229: 0012 MUZAK EQU DECCTS+2
 230: 0012 BMUSIC EQU MUZAK ; BEGIN PLAYING MUSIC
 231: 0014 EMUSIC EQU BMUSIC+2 ; STOP PLAYING MUSIC
 232: ; SCREEN HANDLER ROUTINES
 233: 0016 SCRSTR EQU EMUSIC+2
 234: 0016 SETOUT EQU SCRSTR ; SET SCREEN SIZE
 235: 0018 COLSET EQU SETOUT+2 ; SET COLORS
 236: 001A FILL EQU COLSET+2 ; FILL MEMORY WITH DAT
 237: 001C RECTAN EQU FILL+2 ; PAINT RECTANGLE
 238: 001E VWRITR EQU RECTAN+2 ; WRITE RELATIVE FROM VECTOR
 239: 0020 WRITR EQU VWRITR+2 ; WRITE RELATIVE
 240: 0022 WRITP EQU WRITR+2 ; WRITE WITH PATTERN SIZE LOOKUP
 241: 0024 WRIT EQU WRITP+2 ; WRITE WITH SIZES PROVIDED
 242: 0026 WRITA EQU WRIT+2 ; WRITE ABSOLUTE
 243: 0028 VBLANK EQU WRITA+2 ; BLANK AREA FROM VECTOR
 244: 002A BLANK EQU VBLANK+2 ; BLANK AREA
 245: 002C SAVE EQU BLANK+2 ; SAVE AREA
 246: 002E RESTOR EQU SAVE+2 ; RESTORE AREA
 247: 0030 SCROLL EQU RESTOR+2 ; SCROLL AREA OF SCREEN
 248: ;
 249: 0032 CHRDIS EQU SCROLL+2 ; NEW DISPLAY CHARACTER
 250: 0034 STRDIS EQU CHRDIS+2 ; NEW DISPLAY STRING
 251: 0036 DISNUM EQU STRDIS+2 ; DISPLAY NUMBER
 252: ;
 253: 0038 RELABS EQU DISNUM+2 ; RELATIVE TO ABSOLUTE CONVERSI
 254: 003A RELAB1 EQU RELABS+2 ; NONMAGIC RELABS
 255: 003C VECTC EQU RELAB1+2 ; VECTOR SINGLE COORDINATE
 256: 003E VECT EQU VECTC+2 ; VECTOR COORDINATE PAIR
 257: ; HUMAN INTERFACE ROUTINES
 258: 0040 HUMANR EQU VECT +2
 259: 0040 KCTASC EQU HUMANR ; KEY CODE TO ASCII
 260: 0042 SENTRY EQU KCTASC+2 ; SENSE TRANSITION
 261: 0044 DOIT EQU SENTRY+2 ; BRANCH TO TRANSITION HANDLER
 262: 0046 DOITB EQU DOIT+2 ; USE B INSTEAD OF A
 263: 0048 PIZBRK EQU DOITB+2 ; TAKE A BREAK
 264: 004A MENU EQU PIZBRK+2 ; DISPLAY A MENU
 265: 004C GETPAR EQU MENU+2 ; GET GAME PARAMENTER FROM USER
 266: 004E GETNUM EQU GETPAR+2 ; GET NUMBER FROM USER
 267: 0050 PAWS EQU GETNUM+2 ; PAUSE

 Bally.h - Header File and Symbolic Table References

 7

Feb 08 16:23 2002 bally.h Page 7

 268: 0052 DISTIM EQU PAWS+2 ; DISPLAY TIME
 269: 0054 INCSCR EQU DISTIM+2 ; INC SCORE
 270: ; MATH ROUTINES
 271: 0056 MATH EQU INCSCR+2
 272: 0056 INDEXN EQU MATH ; INDEX NIBBLE
 273: 0058 STOREN EQU INDEXN+2 ;
 274: 005A INDEXW EQU STOREN+2 ; INDEX WORD
 275: 005C INDEXB EQU INDEXW+2 ; INDEX BYTE
 276: 005E MOVE EQU INDEXB+2 ; BLOCK TRANSFER
 277: 0060 SHIFTU EQU MOVE+2 ; SHIFT UP A DIGIT
 278: 0062 BCDADD EQU SHIFTU+2 ; BCD ADD
 279: 0064 BCDSUB EQU BCDADD+2 ; BCD SUBTRACT
 280: 0066 BCDMUL EQU BCDSUB+2 ; BCD MULTIPLY
 281: 0068 BCDDIV EQU BCDMUL+2 ; BCD DIVIDE
 282: 006A BCDCHS EQU BCDDIV+2 ; BCD CHANGE SIGN
 283: 006C BCDNEG EQU BCDCHS+2 ; BCD NEGATE
 284: 006E DADD EQU BCDNEG+2 ; DECIMAL ADD
 285: 0070 DSMG EQU DADD+2 ; CONVERT TO SIGN MAGNITUDE
 286: 0072 DABS EQU DSMG+2 ; DECIMAL ABSOLUTE VALUE
 287: 0074 NEGT EQU DABS+2 ; NEGATE
 288: 0076 RANGED EQU NEGT+2 ; RANGED RANDOM NUMBER
 289: 0078 QUIT EQU RANGED+2 ; QUIT CASSETTE EXECUTION
 290: 007A SETB EQU QUIT+2 ; SET BYTE
 291: 007C SETW EQU SETB+2 ; SET WORD
 292: 007E MSKTD EQU SETW+2 ; MASK TO DELTAS

Bally.h - Header File , Symbolic Table References

 8

Feb 08 16:23 2002 bally.h Page 8

 294: ; **********
 295: ; * MACROS *
 296: ; **********
 297: ; MACROS TO DEFINE PATTERNS
 298: DEF2 MACRO AA, AB
 299: DEFB AA
 300: DEFB AB
 301: ENDM
 302: DEF3 MACRO BA, BB, BCC
 303: DEFB BA
 304: DEFB BB
 305: DEFB BCC ; 'BC' reserved, so used 'BCC'
 306: ENDM
 307: DEF4 MACRO CA, CB, CC, CD
 308: DEFB CA
 309: DEFB CB
 310: DEFB CC
 311: DEFB CD
 312: ENDM
 313: DEF5 MACRO DA, DBB, DC, DD, DEE
 314: DEFB DA
 315: DEFB DBB ; 'DB' reserved, so used 'DBB'
 316: DEFB DC
 317: DEFB DD
 318: DEFB DEE ; 'DE' reserved, so used 'DEE'
 319: ENDM
 320: DEF6 MACRO EA, EB, EC, ED, EE, EF
 321: DEFB EA
 322: DEFB EB
 323: DEFB EC
 324: DEFB ED
 325: DEFB EE
 326: DEFB EF
 327: ENDM
 328: DEF8 MACRO GA, GB, GC, GD, GEE, GF, GG, GH
 329: DEFB GA
 330: DEFB GB
 331: DEFB GC
 332: DEFB GD
 333: DEFB GEE ; 'GE' reserved, so used 'GEE'
 334: DEFB GF
 335: DEFB GG
 336: DEFB GH
 337: ENDM
 338: ; MACROS TO COMPUTE CONSTANT SCREEN ADDRESSES
 339: XYRELL MACRO p1, p2, p3 ; RELATIVE LOAD
 340: LD p1,. RES. (p3). SHL. 8+(p2)
 341: ENDM
 342: ; MACRO TO GENERATE SYSTEM CALL
 343: SYSTEM MACRO NUMBA
 344: RST 56
 345: DEFB NUMBA
 346: IF NUMBA = INTPC
 347: INTPCC DEFL 1
 348: ENDIF
 349: ENDM

 Bally.h - Header File and Symbolic Table References

 9

Feb 08 16:23 2002 bally.h Page 9

 350: ; MACRO TO GENERATE SYSTEM CALL WITH SUCK OPTION ON
 351: SYSSUK MACRO UMBA
 352: RST 56
 353: DEFB UMBA+1
 354: IF UMBA = INTPC
 355: INTPCC DEFL 1
 356: ENDIF
 357: ENDM
 358: ; MACROS TO GENERATE MACRO INSTRUCTION CALLS
 359: ; FILL SCREEN WITH CONSTANT DATA (was 'FILL?')
 360: FILLq MACRO START, NBYTES, DATA
 361: DEFB FILL+1
 362: DEFW START
 363: DEFW NBYTES
 364: DEFB DATA
 365: ENDM
 366: ; EXIT INTERPRETER WITH CONTEXT RESTORE
 367: EXIT MACRO
 368: DEFB XINTC
 369: INTPCC DEFL 0
 370: ENDM
 371: ; INTERPRET WITH INLINE SUCK
 372: DO MACRO CID
 373: DEFB CID+1
 374: ENDM
 375: ; INTERPRET WITHOUT INLINE SUCK
 376: DONT MACRO CID
 377: DEFB CID
 378: ENDM
 379: ; MACRO CALL FROM DOIT TABLE
 380: 00C0 ENDx EQU 0C0H
 381: MC MACRO AA, BB, EE
 382: DEFB AA+80H
 383: DEFW BB
 384: IF EE
 385: DEFB EE
 386: ENDIF
 387: ENDM
 388: ; REAL CALL FROM DOIT TABLE
 389: RC MACRO AA, BB, EE
 390: DEFB AA+40H
 391: DEFW BB
 392: IF EE
 393: DEFB EE
 394: ENDIF
 395: ENDM
 396: ; REAL JUMP FROM DOIT TABLE
 397: JMPd MACRO AA, BB, EE
 398: DEFB AA
 399: DEFW BB
 400: IF EE
 401: DEFB EE
 402: ENDIF
 403: ENDM
 404: ; DISPLAY A STRING
 405: TEXTD MACRO AA, BB, CC, DD

Bally.h - Header File , Symbolic Table References

 10

Feb 08 16:23 2002 bally.h Page 10

 406: DEFB STRDIS+1
 407: DEFB BB
 408: DEFB CC
 409: DEFB DD
 410: DEFW AA
 411: ENDM

 413: ;**************
 414: ; MUSIC MACROS
 415: ; NOTE DURATION, FREQ(S)
 416: NOTE1 MACRO DUR, N1
 417: DEFB (DUR)&(7FH)
 418: DEFB N1
 419: ENDM
 420: NOTE2 MACRO DUR, N1, N2
 421: DEFB (DUR)&(7FH)
 422: DEFB N1
 423: DEFB N2
 424: ENDM
 425: NOTE3 MACRO DUR, N1, N2, N3
 426: DEFB DUR
 427: DEFB N1
 428: DEFB N2
 429: DEFB N3
 430: ENDM
 431: NOTE4 MACRO DUR, N1, N2, N3, N4
 432: DEFB DUR
 433: DEFB N1
 434: DEFB N2
 435: DEFB N3
 436: DEFB N4
 437: ENDM
 438: NOTE5 MACRO DUR, N1, N2, N3, N4, N5
 439: DEFB DUR
 440: DEFB N1
 441: DEFB N2
 442: DEFB N3
 443: DEFB N4
 444: DEFB N5
 445: ENDM
 446: MASTER MACRO OFFSET
 447: DEFB 80H
 448: DEFB OFFSET
 449: ENDM
 450: ; STUFF OUTPUT PORT#, DATA OR
 451: ; OUTPUT SNDBX, DATA10, D11,..., DATA17
 452: OUTPUT MACRO PORT, D0, D1, D2, D3, D4, D5, D6, D7
 453: IF .NOT. (PORT=18H)
 454: DEFB 80H+((PORT)&(7FH))
 455: DEFB D0
 456: ENDIF
 457: IF PORT=18H
 458: DEFB 88H

 Bally.h - Header File and Symbolic Table References

 11

Feb 08 16:23 2002 bally.h Page 11

 459: DEF8 D7, D6 ,D5, D4, D3, D2, D1, D0
 460: ENDIF
 461: ENDM
 462: ; SET VOICE BYTE
 463: ; THE FORMAT OF THE VOICE BYTE IS
 464: ; *I*A*I*B*I*C*V*N
 465: ; WHERE N = LOAD NOISE WITH DATA AT PC AND INC PC
 466: ; V = LOAD VIBRATO AND INC PC
 467: ; I = INC PC
 468: ; A,B,C = LOAD TONE A,B,C WITH DATA AT PC
 469: VOICEM MACRO MASK ; 'VOICES' TO 'VOICEM'
 470: DEFB 90H
 471: DEFB MASK
 472: ENDM
 473: ; PUSH NUMBER ONTO STACK
 474: PUSHN MACRO NUMB
 475: DEFB 0A0H+((NUMB-1). AND. 0FH)
 476: ENDM
 477: ; SET VOLUMES
 478: VOLUME MACRO P1, P2
 479: DEFB 0B0H
 480: DEFB P1
 481: DEFB P2
 482: ENDM
 483: ; CALL RELATIVE 0-15 BEYOND SELF+1
 484: CREL MACRO BY
 485: DEFB 0D0H+(BY.AND.0FH)
 486: ENDM
 487: ; DEC STACK TOP AND JNZ
 488: DSJNZ MACRO ADD_IT
 489: DEFB 0C0H
 490: DEFW ADD_IT
 491: ENDM
 492: ; FLIP LEGATO STACATO
 493: LEGSTA MACRO
 494: DEFB 0E0H
 495: ENDM
 496: REST MACRO TIME
 497: DEFB 0E1H
 498: DEFB TIME
 499: ENDM
 500: QUIET MACRO
 501: DEFB 0F0H
 502: ENDM
 503: ; *****************
 504: ; * MUSIC EQUATES *
 505: ; *****************
 506: ; NOTE VALUES
 507: 00FD G0 EQU 253
 508: 00EE GS0 EQU 238
 509: 00E1 A0 EQU 225
 510: 00D4 AS0 EQU 212
 511: 00C8 B0 EQU 200
 512: 00BD C1 EQU 189
 513: 00B2 CS1 EQU 178
 514: 00A8 D1 EQU 168

Bally.h - Header File , Symbolic Table References

 12

Feb 08 16:23 2002 bally.h Page 12

 515: 009F DS1 EQU 159
 516: 0096 E1 EQU 150
 517: 008D F1 EQU 141
 518: 0085 FS1 EQU 133
 519: 007E G1 EQU 126
 520: 0077 GS1 EQU 119
 521: 0070 A1 EQU 112
 522: 006A AS1 EQU 106
 523: 0064 B1 EQU 100
 524: 005E C2 EQU 94
 525: 0059 CS2 EQU 89
 526: 0054 D2 EQU 84
 527: 004F DS2 EQU 79
 528: 004A E2 EQU 74
 529: 0046 F2 EQU 70
 530: 0042 FS2 EQU 66
 531: 003E G2 EQU 62
 532: 003B GS2 EQU 59
 533: 0037 A2 EQU 55
 534: 0034 AS2 EQU 52
 535: 0031 B2 EQU 49
 536: 002E C3 EQU 46
 537: 002C CS3 EQU 44
 538: 0029 D3 EQU 41
 539: 0027 DS3 EQU 39
 540: 0025 E3 EQU 37
 541: 0022 F3 EQU 34
 542: 0020 FS3 EQU 32
 543: 001F G3 EQU 31
 544: 001D GS3 EQU 29
 545: 001B A3 EQU 27
 546: 001A AS3 EQU 26
 547: 0018 B3 EQU 24
 548: 0017 C4 EQU 23
 549: 0015 CS4 EQU 21
 550: 0014 D4 EQU 20
 551: 0013 DS4 EQU 19
 552: 0012 E4 EQU 18
 553: 0011 F4 EQU 17
 554: 0010 FS4 EQU 16
 555: 000F G4 EQU 15
 556: 000E GS4 EQU 14
 557: 000D A4 EQU 13
 558: 000B C5 EQU 11
 559: 000A CS5 EQU 10
 560: 0009 DS5 EQU 9
 561: 0008 F5 EQU 8
 562: 0007 G5 EQU 7
 563: 0006 A5 EQU 6
 564: 0005 C6 EQU 5
 565: 0004 DS6 EQU 4
 566: 0003 G6 EQU 3
 567: 0002 C7 EQU 2
 568: 0001 G7 EQU 1
 569: 0000 G8 EQU 0
 570: ; MASTER OSCILATOR OFFSETS

 Bally.h - Header File and Symbolic Table References

 13

Feb 08 16:23 2002 bally.h Page 13

 571: 00FE OB0 EQU 254
 572: 00F1 OC0 EQU 241
 573: 00D6 OD1 EQU 214
 574: 00BF OE1 EQU 191
 575: 00B4 OF1 EQU 180
 576: 00A0 OG1 EQU 160
 577: 008F OA1 EQU 143
 578: 0047 OA2 EQU 71
 579: 0023 OA3 EQU 35
 580: 0011 OA4 EQU 17
 581: 0008 OA5 EQU 8

Bally.h - Header File , Symbolic Table References

 14

Feb 08 16:23 2002 bally.h Page 14

 583: ; ***************************
 584: ; * SYSTEM RAM MEMORY CELLS *
 585: ; ***************************
 586: 0FFF WASTE EQU 0FFFH
 587: 0FFF WASTER EQU WASTE
 588: ;
 589: ; THE FOLLOWING ORG SHOULD BE SET TO THE VALUE OF
 590: ; THE TAG 'SYSRAM', THIS WILL CAUSE SYSTEM RAM
 591: ; TO RESIDE AT THE HIGEST POSSIBLE ADDRESS
 592: ;
 593: ; ORG 4FC8H
 594: ; DEFS 6 ; GOT SOME LEFT STILL
 595: 4FCE BEGRAM EQU 4FCEH
 596: ; USED BY MUSIC PROCESSOR
 597: 4FCE MUZPC EQU 4FCEH ; MUSIC PROGRAM COUNTER
 598: 4FD0 MUZSP EQU 4FD0H ; MUSIC STACK POINTER
 599: 4FD2 PVOLAB EQU 4FD2H ; PRESET VOLUME FOR TONES A AND B
 600: 4FD3 PVOLMC EQU 4FD3H ; PRESET VOLUME FOR MASTER OSC
 601: 4FD4 VOICES EQU 4FD4H ; MUSIC VOICES
 602: ; COUNTER TIMERS (USED BY DECCTS,ACTINT,CTIMER)
 603: 4FD5 CT0 EQU 4FD5H ; COUNTER TIMER 0
 604: 4FD6 CT1 EQU 4FD6H ; 1
 605: 4FD7 CT2 EQU 4FD7H ; 2
 606: 4FD8 CT3 EQU 4FD8H ; 3
 607: 4FD9 CT4 EQU 4FD9H ; 4
 608: 4FDA CT5 EQU 4FDAH ; 5
 609: 4FDB CT6 EQU 4FDBH ; 6
 610: 4FDC CT7 EQU 4FDCH ; 7
 611: ;USED BY SENTRY TO TRACK CONTROLS
 612: 4FDD CNT EQU 4FDDH ; COUNTER UPDATE&NUMBER TRACKING
 613: 4FDE SEMI4S EQU 4FDEH ; FLAG BITS
 614: 4FDF OPOT0 EQU 4FDFH ; POT 0 TRACKING
 615: 4FE0 OPOT1 EQU 4FE0H ; POT 1 TRACKING
 616: 4FE1 OPOT2 EQU 4FE1H ; POT 2 TRACKING
 617: 4FE2 OPOT3 EQU 4FE2H ; POT 3 TRACKING
 618: 4FE3 KEYSEX EQU 4FE3H ; KEYBOARD TRACKING BYTE
 619: 4FE4 OSW0 EQU 4FE4H ; SWITCH 0 TRACKING
 620: 4FE5 OSW1 EQU 4FE5H ; SWITCH 1 TRACKING
 621: 4FE6 OSW2 EQU 4FE6H ; SWITCH 2 TRACKING
 622: 4FE7 OSW3 EQU 4FE7H ; SWITCH 3 TRACKING
 623: 4FE8 COLLST EQU 4FE8H ; COLOR LIST ADDRESS FOR P.B.A
 624: ; USED BY STIMER
 625: 4FEA DURAT EQU 4FEAH ; NOTE DURATION
 626: 4FEB TMR60 EQU 4FEBH ; SIXTIETHS OF SEC
 627: 4FEC TIMOUT EQU 4FECH ; BLAKOUT TIMER
 628: 4FED GTSECS EQU 4FEDH ; GAME TIME SECONDS
 629: 4FEE GTMINS EQU 4FEEH ; GAME TIME MINUTES
 630: ; USED BY MENU
 631: 4FEF RANSHT EQU 4FEFH ; RANDOM NUMBER SHIFT REGISTER
 632: 4FF3 NUMPLY EQU 4FF3H ; NUMBER OF PLAYERS
 633: 4FF4 ENDSCR EQU 4FF4H ; SCORE TO 'PLAY TO'
 634: 4FF7 MRLOCK EQU 4FF7H ; MAGIC REGISTER LOCK OUT FLAG
 635: 4FF8 GAMSTB EQU 4FF8H ; GAME STATUS BYTE
 636: 4FF9 PRIOR EQU 4FF9H ; MUSIC PROTECT FLAG
 637: 4FFA SENFLG EQU 4FFAH ; SENTRY CONTROL SEIZURE FLAG
 638: 4FFB UMARGT EQU 4FFBH

 Bally.h - Header File and Symbolic Table References

 15

Feb 08 16:23 2002 bally.h Page 15

 639: 4FFD USERTB EQU 4FFDH
 640: 9FCD SYSRAM EQU (5000H-($-BEGRAM+1))
**** bally.h ****

Statistics:

 426 symbols
 0 bytes

 0 macro calls
 2744 macro bytes
 0 invented symbols

Bally.h - Header File , Symbolic Table References

 16

Feb 08 16:23 2002 ** Symbol Table ** Page 16

Symbol Table:

a0 = e1+ fntsml = 20d+ ranged = 76
a1 = 70+ fntsys = 206+ ransht =4fef+
a2 = 37+ fs1 = 85+ rc 521+
a3 = 1b+ fs2 = 42+ rcall = 4
a4 = d+ fs3 = 20+ rectan = 1c
a5 = 6+ fs4 = 10+ relab1 = 3a
actint = e ftbase = 0+ relabs = 38
alkeys = 214+ ftbyte = 3+ rest a60+
as0 = d4+ ftfsx = 1+ restor = 2e
as1 = 6a+ ftfsy = 2+ save = 2c
as2 = 34+ ftpth = 6+ schedr = c
as3 = 1a+ ftptl = 5+ screen = 0+
b0 = c8+ ftysiz = 4+ scroll = 30
b1 = 64+ g0 = fd+ scrstr = 16
b2 = 31+ g1 = 7e+ sct0 = 1+
b3 = 18+ g2 = 3e+ sct1 = 2+
bcdadd = 62 g3 = 1f+ sct2 = 3+
bcdchs = 6a g4 = f+ sct3 = 4+
bcddiv = 68 g5 = 7+ sct4 = 5+
bcdmul = 66 g6 = 3+ sct5 = 6+
bcdneg = 6c g7 = 1+ sct6 = 7+
bcdsub = 64 g8 = 0+ sct7 = 8+
begram =4fce gamstb =4ff8+ semi4s =4fde+
bitspl = a0+ getnum = 4e senflg =4ffa+
blank = 2a getpar = 4c sentry = 42
bmusic = 12 gs0 = ee+ setb = 7a
bytepl = 28+ gs1 = 77+ setout = 16
c1 = bd+ gs2 = 3b+ setw = 7c
c2 = 5e+ gs3 = 1d+ sf0 = 9+
c3 = 2e+ gs4 = e+ sf1 = a+
c4 = 17+ gsbend = 7+ sf2 = b+
c5 = b+ gsbscr = 1+ sf3 = c+
c6 = 5+ gsbtim = 0+ sf4 = d+
c7 = 2+ gtmins =4fee+ sf5 = e+
cba = 9+ gtsecs =4fed+ sf6 = f+
cbb = 7+ horaf = f+ sf7 = 10+
cbc = 6+ horcb = 9+ shiftu = 60
cbd = 5+ humanr = 40 sj0 = 15+
cbe = 4+ incscr = 54 sj1 = 17+
cbflag = 8+ indexb = 5c sj2 = 19+
cbh = b+ indexn = 56 sj3 = 1b+
cbixh = 3+ indexw = 5a skyd = 13+
cbixl = 2+ infbk = d+ skyu = 12+
cbiyh = 1+ inlin = f+ sndbx = 18+
cbiyl = 0+ inmod = e+ snul = 0+
cbl = a+ intpc = 0 sp0 = 1c+
chdown = 1+ intst = 8+ sp1 = 1d+
chleft = 2+ jmpd 58a+ sp2 = 1e+
chrdis = 32 kctasc = 40 sp3 = 1f+
chrigh = 3+ key0 = 14+ ssec = 11+
chtrig = 4+ key1 = 15+ st0 = 14+
chup = 0+ key2 = 16+ st1 = 16+

 Bally.h - Header File and Symbolic Table References

 17

Feb 08 16:23 2002 ** Symbol Table ** Page 17

cnt =4fdd+ key3 = 17+ st2 = 18+
col0l = 4+ keysex =4fe3+ st3 = 1a+
col0r = 0+ legsta a3d+ stimer = 200+
col1l = 5+ magic = c+ storen = 58
col1r = 1+ master 821+ strdis = 34
col2l = 6+ math = 56 suck = c
col2r = 2+ mc 4b8+ sw0 = 10+
col3l = 7+ mcall = 6 sw1 = 11+
col3r = 3+ menu = 4a sw2 = 12+
colbx = b+ menust = 218+ sw3 = 13+
collst =4fe8+ mjump = a sysram =9fcd+
colset = 18 move = 5e syssuk 376+
concm = 8+ mret = 8 system 309+
crel 9d8+ mrflop = 6+ textd 5ef+
cs1 = b2+ mrlock =4ff7+ timout =4fec+
cs2 = 59+ mror = 4+ tmr60 =4feb+
cs3 = 2c+ mrrot = 2+ tonea = 11+
cs4 = 15+ mrshft = 3+ toneb = 12+
cs5 = a+ mrxor = 5+ tonec = 13+
ct0 =4fd5+ mrxpnd = 3+ tonmo = 10+
ct1 =4fd6+ msktd = 7e+ umargt =4ffb+
ct2 =4fd7+ muzak = 12 upistr = 0
ct3 =4fd8+ muzpc =4fce+ usertb =4ffd+
ct4 =4fd9+ muzsp =4fd0+ vbblnk = 6+
ct5 =4fda+ mxscr = 21e+ vbcchk = 4+
ct6 =4fdb+ negt = 74 vbch = 3+
ct7 =4fdc+ nogame = 235+ vbcl = 2+
ctimer = 203+ noplay = 228+ vbclat = 3+
d1 = a8+ normem =4000+ vbclmt = 0+
d2 = 54+ note1 65e+ vbcrev = 1+
d3 = 29+ note2 699+ vbdch = 1+
d4 = 14+ note3 6e6+ vbdcl = 0+
dabs = 72 note4 73d+ vbdxh = 4+
dadd = 6e note5 7a6+ vbdxl = 3+
deccts = 10 numply =4ff3+ vbdyh = 9+
def2 0+ nwhdwr = 1+ vbdyl = 8+
def3 33+ oa1 = 8f+ vblank = 28
def4 97+ oa2 = 47+ vbmr = 0+
def5 ee+ oa3 = 23+ vboah = e+
def6 195+ oa4 = 11+ vboal = d+
def8 210+ oa5 = 8+ vbsact = 7+
disnum = 36 ob0 = fe+ vbstat = 1+
distim = 52 oc0 = f1+ vbtimb = 2+
do 474+ od1 = d6+ vbxchk = 7+
doit = 44 oe1 = bf+ vbxh = 6+
doitb = 46 of1 = b4+ vbxl = 5+
dont 497+ og1 = a0+ vbychk = c+
ds1 = 9f+ opot0 =4fdf+ vbyh = b+
ds2 = 4f+ opot1 =4fe0+ vbyl = a+
ds3 = 27+ opot2 =4fe1+ vect = 3e
ds4 = 13+ opot3 =4fe2+ vectc = 3c
ds5 = 9+ osw0 =4fe4+ veraf = e+
ds6 = 4+ osw1 =4fe5+ verbl = a+
dsjnz a08+ osw2 =4fe6+ vibra = 14+
dsmg = 70 osw3 =4fe7+ voicem 927+
durat =4fea+ output 855+ voices =4fd4+

Bally.h - Header File , Symbolic Table References

 18

Feb 08 16:23 2002 ** Symbol Table ** Page 18

e1 = 96+ paws = 50 volab = 16+
e2 = 4a+ pizbrk = 48 volc = 15+
e3 = 25+ pot0 = 1c+ voln = 17+
e4 = 12+ pot1 = 1d+ volume 991+
emusic = 14 pot2 = 1e+ vwritr = 1e
endscr =4ff4+ pot3 = 1f+ waste = fff
endx = c0+ prior =4ff9+ waster = fff+
exit 43f+ pswcy = 0+ writ = 24
f1 = 8d+ pswpv = 2+ writa = 26
f2 = 46+ pswsgn = 7+ writp = 22
f3 = 22+ pswzro = 6+ writr = 20
f4 = 11+ pushn 95b+ xintc = 2
f5 = 8+ pvolab =4fd2+ xpand = 19+
fill = 1a pvolmc =4fd3+ xpndon = 1+
fillq 3e4+ quiet a95+ xyrell 2cf+
firstc =2000+ quit = 78

